These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19804893)

  • 1. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.
    Cruz Viggi C; Pagnanelli F; Cibati A; Uccelletti D; Palleschi C; Toro L
    Water Res; 2010 Jan; 44(1):151-8. PubMed ID: 19804893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol.
    Pagnanelli F; Viggi CC; Cibati A; Uccelletti D; Toro L; Palleschi C
    J Hazard Mater; 2012 Jan; 199-200():186-92. PubMed ID: 22104763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphate-reducing laboratory-scale high-rate anaerobic reactors for treatment of metal- and sulphate-containing mine wastewater.
    Tuppurainen KO; Väisänen AO; Rintala JA
    Environ Technol; 2002 Jun; 23(6):599-608. PubMed ID: 12118612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.
    Kieu HT; Müller E; Horn H
    Water Res; 2011 Jul; 45(13):3863-70. PubMed ID: 21632086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor.
    Remoundaki E; Kousi P; Joulian C; Battaglia-Brunet F; Hatzikioseyian A; Tsezos M
    J Hazard Mater; 2008 May; 153(1-2):514-24. PubMed ID: 17931772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.
    Pagnanelli F; De Michelis I; Di Muzio S; Ferella F; Vegliò F
    J Hazard Mater; 2008 Nov; 159(2-3):567-73. PubMed ID: 18394799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals removal from mine runoff using compost bioreactors.
    Christian D; Wong E; Crawford RL; Cheng IF; Hess TF
    Environ Technol; 2010 Dec; 31(14):1533-46. PubMed ID: 21275250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water.
    Pruden A; Messner N; Pereyra L; Hanson RE; Hiibel SR; Reardon KF
    Water Res; 2007 Feb; 41(4):904-14. PubMed ID: 17222885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal precipitation in an ethanol-fed, fixed-bed sulphate-reducing bioreactor.
    Kousi P; Remoundaki E; Hatzikioseyian A; Battaglia-Brunet F; Joulian C; Kousteni V; Tsezos M
    J Hazard Mater; 2011 May; 189(3):677-84. PubMed ID: 21316850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 May; 153(1-2):136-45. PubMed ID: 17890001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.
    Song H; Yim GJ; Ji SW; Neculita CM; Hwang T
    J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.