These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19805036)

  • 1. Single-cell response to stiffness exhibits muscle-like behavior.
    Mitrossilis D; Fouchard J; Guiroy A; Desprat N; Rodriguez N; Fabry B; Asnacios A
    Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18243-8. PubMed ID: 19805036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acto-myosin based response to stiffness and rigidity sensing.
    Fouchard J; Mitrossilis D; Asnacios A
    Cell Adh Migr; 2011; 5(1):16-9. PubMed ID: 20818154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of cell spreading within 3D-micropatterned environments.
    Ghibaudo M; Di Meglio JM; Hersen P; Ladoux B
    Lab Chip; 2011 Mar; 11(5):805-12. PubMed ID: 21132213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress.
    Doss BL; Pan M; Gupta M; Grenci G; Mège RM; Lim CT; Sheetz MP; Voituriez R; Ladoux B
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12817-12825. PubMed ID: 32444491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation.
    Poveda-Reyes S; Moulisova V; Sanmartín-Masiá E; Quintanilla-Sierra L; Salmerón-Sánchez M; Ferrer GG
    Macromol Biosci; 2016 Sep; 16(9):1311-24. PubMed ID: 27213762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force transmission in migrating cells.
    Fournier MF; Sauser R; Ambrosi D; Meister JJ; Verkhovsky AB
    J Cell Biol; 2010 Jan; 188(2):287-97. PubMed ID: 20100912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-muscle myosin II regulates aortic stiffness through effects on specific focal adhesion proteins and the non-muscle cortical cytoskeleton.
    Singh K; Kim AB; Morgan KG
    J Cell Mol Med; 2021 Mar; 25(5):2471-2483. PubMed ID: 33547870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness sensing by smooth muscle cells: Continuum mechanics modeling of the acto-myosin role.
    Karkhaneh Yousefi AA; Petit C; Ben Hassine A; Avril S
    J Mech Behav Biomed Mater; 2023 Aug; 144():105990. PubMed ID: 37385127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts.
    Balland M; Richert A; Gallet F
    Eur Biophys J; 2005 May; 34(3):255-61. PubMed ID: 15864681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation.
    Dhawan J; Helfman DM
    J Cell Sci; 2004 Aug; 117(Pt 17):3735-48. PubMed ID: 15252113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell shape dynamics reveal balance of elasticity and contractility in peripheral arcs.
    Labouesse C; Verkhovsky AB; Meister JJ; Gabella C; Vianay B
    Biophys J; 2015 May; 108(10):2437-2447. PubMed ID: 25992722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts.
    Azatov M; Goicoechea SM; Otey CA; Upadhyaya A
    Sci Rep; 2016 Jun; 6():28805. PubMed ID: 27353427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time single-cell response to stiffness.
    Mitrossilis D; Fouchard J; Pereira D; Postic F; Richert A; Saint-Jean M; Asnacios A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16518-23. PubMed ID: 20823257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronic acid matrices show matrix stiffness in 2D and 3D dictates cytoskeletal order and myosin-II phosphorylation within stem cells.
    Rehfeldt F; Brown AE; Raab M; Cai S; Zajac AL; Zemel A; Discher DE
    Integr Biol (Camb); 2012 Apr; 4(4):422-30. PubMed ID: 22344328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal cell traction forces in a generalized motor-clutch model.
    Alonso-Matilla R; Provenzano PP; Odde DJ
    Biophys J; 2023 Aug; 122(16):3369-3385. PubMed ID: 37475213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics.
    Al-Rekabi Z; Pelling AE
    Phys Biol; 2013 Dec; 10(6):066003. PubMed ID: 24164970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells.
    Sanyour HJ; Li N; Rickel AP; Childs JD; Kinser CN; Hong Z
    Cardiovasc Res; 2019 Jul; 115(8):1369-1380. PubMed ID: 30395154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate stiffness promotes latent TGF-β1 activation in hepatocellular carcinoma.
    Pang M; Teng Y; Huang J; Yuan Y; Lin F; Xiong C
    Biochem Biophys Res Commun; 2017 Jan; 483(1):553-558. PubMed ID: 28025149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of intermediate filaments in the shape maintenance of myoblast model tissues.
    Nagle I; Delort F; Hénon S; Wilhelm C; Batonnet-Pichon S; Reffay M
    Elife; 2022 Dec; 11():. PubMed ID: 36453730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.