These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19805283)

  • 1. Structure of a tRNA-dependent kinase essential for selenocysteine decoding.
    Araiso Y; Sherrer RL; Ishitani R; Ho JM; Söll D; Nureki O
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16215-20. PubMed ID: 19805283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNA(Sec).
    Sherrer RL; Araiso Y; Aldag C; Ishitani R; Ho JM; Söll D; Nureki O
    Nucleic Acids Res; 2011 Feb; 39(3):1034-41. PubMed ID: 20870747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation.
    Sherrer RL; O'Donoghue P; Söll D
    Nucleic Acids Res; 2008 Mar; 36(4):1247-59. PubMed ID: 18174226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
    Sherrer RL; Ho JM; Söll D
    Nucleic Acids Res; 2008 Apr; 36(6):1871-80. PubMed ID: 18267971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional investigation of a putative archaeal selenocysteine synthase.
    Kaiser JT; Gromadski K; Rother M; Engelhardt H; Rodnina MV; Wahl MC
    Biochemistry; 2005 Oct; 44(40):13315-27. PubMed ID: 16201757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine.
    Chiba S; Itoh Y; Sekine S; Yokoyama S
    Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
    Yuan J; Palioura S; Salazar JC; Su D; O'Donoghue P; Hohn MJ; Cardoso AM; Whitman WB; Söll D
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18923-7. PubMed ID: 17142313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
    Carlson BA; Xu XM; Kryukov GV; Rao M; Berry MJ; Gladyshev VN; Hatfield DL
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12848-53. PubMed ID: 15317934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of selenocysteine on its tRNA in eukaryotes.
    Xu XM; Carlson BA; Mix H; Zhang Y; Saira K; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    PLoS Biol; 2007 Jan; 5(1):e4. PubMed ID: 17194211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea.
    Xu XM; Carlson BA; Zhang Y; Mix H; Kryukov GV; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    Biol Trace Elem Res; 2007 Dec; 119(3):234-41. PubMed ID: 17916946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric behavior of archaeal prolyl-tRNA synthetase.
    Ambrogelly A; Kamtekar S; Stathopoulos C; Kennedy D; Söll D
    FEBS Lett; 2005 Nov; 579(27):6017-22. PubMed ID: 16226256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli.
    Yuan J; Hohn MJ; Sherrer RL; Palioura S; Su D; Söll D
    FEBS Lett; 2010 Jul; 584(13):2857-61. PubMed ID: 20493852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation.
    Araiso Y; Palioura S; Ishitani R; Sherrer RL; O'Donoghue P; Yuan J; Oshikane H; Domae N; Defranco J; Söll D; Nureki O
    Nucleic Acids Res; 2008 Mar; 36(4):1187-99. PubMed ID: 18158303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leishmania donovani Encodes a Functional Selenocysteinyl-tRNA Synthase.
    Manhas R; Gowri VS; Madhubala R
    J Biol Chem; 2016 Jan; 291(3):1203-20. PubMed ID: 26586914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.
    Palioura S; Sherrer RL; Steitz TA; Söll D; Simonovic M
    Science; 2009 Jul; 325(5938):321-5. PubMed ID: 19608919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis.
    French RL; Gupta N; Copeland PR; Simonović M
    J Biol Chem; 2014 Oct; 289(42):28783-94. PubMed ID: 25190812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.
    Itoh Y; Bröcker MJ; Sekine S; Söll D; Yokoyama S
    J Mol Biol; 2014 Apr; 426(8):1723-35. PubMed ID: 24456689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decameric SelA•tRNA(Sec) ring structure reveals mechanism of bacterial selenocysteine formation.
    Itoh Y; Bröcker MJ; Sekine S; Hammond G; Suetsugu S; Söll D; Yokoyama S
    Science; 2013 Apr; 340(6128):75-8. PubMed ID: 23559248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2007 Jun; 370(1):128-41. PubMed ID: 17512006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.