BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19805285)

  • 1. Short-distance probes for protein backbone structure based on energy transfer between bimane and transition metal ions.
    Taraska JW; Puljung MC; Zagotta WN
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16227-32. PubMed ID: 19805285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-Range Distance Measurement by Transition Metal Ion FRET.
    Mortensen JS; Loland CJ
    Methods Mol Biol; 2020; 2168():299-311. PubMed ID: 33582998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the structure and conformational movements of proteins with transition metal ion FRET.
    Taraska JW; Puljung MC; Olivier NB; Flynn GE; Zagotta WN
    Nat Methods; 2009 Jul; 6(7):532-7. PubMed ID: 19525958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane.
    Gordon SE; Senning EN; Aman TK; Zagotta WN
    J Gen Physiol; 2016 Feb; 147(2):189-200. PubMed ID: 26755772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner.
    Jones Brunette AM; Farrens DL
    Biochemistry; 2014 Oct; 53(40):6290-301. PubMed ID: 25144569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance energy transfer between sites in rat liver glutathione S-transferase, 1-1, selectively modified at cysteine-17 and cysteine-111.
    Hu L; Colman RF
    Biochemistry; 1997 Feb; 36(7):1635-45. PubMed ID: 9048547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing conformational dynamics of proteins in solution and at the cell membrane.
    Gordon SE; Munari M; Zagotta WN
    Elife; 2018 Jun; 7():. PubMed ID: 29923827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches to Introduce Helical Structure in Cysteine-Containing Peptides with a Bimane Group.
    Horsfall AJ; McDougal DP; Scanlon DB; Bruning JB; Abell AD
    Chembiochem; 2021 Sep; 22(17):2711-2720. PubMed ID: 34107164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.
    Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition Metal Ion FRET in the Gas Phase: A 10-40 Å Range Molecular Ruler for Mass-Selected Biomolecular Ions.
    Tiwari P; Wu R; Metternich JB; Zenobi R
    J Am Chem Soc; 2021 Aug; 143(30):11291-11295. PubMed ID: 34291949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimane fluorescent labels. Characterization of the bimane labeling of human hemoglobin.
    Kosower NS; Newton GL; Kosower EM; Ranney HM
    Biochim Biophys Acta; 1980 Apr; 622(2):201-9. PubMed ID: 7378449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum.
    Bigelow DJ; Inesi G
    Biochemistry; 1991 Feb; 30(8):2113-25. PubMed ID: 1825607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring caspase activity by Förster resonance energy transfer.
    Rehm M; Parsons MJ; Bouchier-Hayes L
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.prot082560. PubMed ID: 25561624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide.
    Eis PS; Lakowicz JR
    Biochemistry; 1993 Aug; 32(31):7981-93. PubMed ID: 8347602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing native metal ion association sites through quenching of fluorophores in the nucleotide-binding domains of the ABC transporter MsbA.
    Tatsumi D; Nanatani K; Koike Y; Kamagata K; Takahashi S; Konno A; Furuta T; Sakurai M; Uozumi N
    Biochem J; 2017 May; 474(12):1993-2007. PubMed ID: 28432259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state and time-resolved fluorescence quenching with transition metal ions as short-distance probes for protein conformation.
    Posokhov YO; Kyrychenko A; Ladokhin AS
    Anal Biochem; 2010 Dec; 407(2):284-6. PubMed ID: 20707982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium-binding proteins. 2. Thermolysin.
    Snyder AP; Sudnick DR; Arkle VK; Horrocks WD
    Biochemistry; 1981 Jun; 20(12):3334-9. PubMed ID: 7260036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Förster resonance energy transfer measurements of ryanodine receptor type 1 structure using a novel site-specific labeling method.
    Fessenden JD
    PLoS One; 2009 Oct; 4(10):e7338. PubMed ID: 19823671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.