These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1980535)
21. A comparison of the sites at which pentazocine and morphine act to produce analgesia. Llewelyn MB; Azami J; Gibbs M; Roberts MHT Pain; 1983 Aug; 16(4):313-331. PubMed ID: 6622044 [TBL] [Abstract][Full Text] [Related]
22. Lack of evidence for increased descending inhibition on the dorsal horn of the rat following periaqueductal grey morphine microinjections. Dickenson AH; Le Bars D Br J Pharmacol; 1987 Oct; 92(2):271-80. PubMed ID: 3676594 [TBL] [Abstract][Full Text] [Related]
23. Partial involvement of monoamines and opiates in the inhibition of rat spinal nociceptive neurons evoked by stimulation in midbrain periaqueductal gray or lateral reticular formation. Carstens E; Culhane ES; Banisadr R Brain Res; 1990 Jul; 522(1):7-13. PubMed ID: 2224516 [TBL] [Abstract][Full Text] [Related]
24. Low dose of morphine microinjected in the ventral periaqueductal gray matter of the rat depresses responses of nociceptive ventrobasal thalamic neurons. Kayser V; Benoist JM; Guilbaud G Neurosci Lett; 1983 Jun; 37(2):193-8. PubMed ID: 6308525 [TBL] [Abstract][Full Text] [Related]
25. Morphine applied to the thalamic nucleus submedius produces a naloxone reversible antinociceptive effect in the rat. Dong YF; Tang JS; Yuan B; Jia H Neurosci Lett; 1999 Aug; 271(1):17-20. PubMed ID: 10471203 [TBL] [Abstract][Full Text] [Related]
26. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia. Behbehani MM; Fields HL Brain Res; 1979 Jul; 170(1):85-93. PubMed ID: 223721 [TBL] [Abstract][Full Text] [Related]
27. Antinociception produced by microinjection of morphine in the rat periaqueductal gray is enhanced in the foot, but not the tail, by intrathecal injection of alpha1-adrenoceptor antagonists. Fang F; Proudfit HK Brain Res; 1998 Apr; 790(1-2):14-24. PubMed ID: 9593804 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of rat spinothalamic tract neuronal responses to noxious skin heating by stimulation in midbrain periaqueductal gray or lateral reticular formation. Carstens E Pain; 1988 May; 33(2):215-224. PubMed ID: 3380561 [TBL] [Abstract][Full Text] [Related]
29. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat. Jensen TS; Yaksh TL Brain Res; 1986 Jan; 363(1):99-113. PubMed ID: 3004644 [TBL] [Abstract][Full Text] [Related]
30. Spinal monoaminergic receptors mediate the antinociception produced by glutamate in the medullary lateral reticular nucleus. Janss AJ; Gebhart GF J Neurosci; 1987 Sep; 7(9):2862-73. PubMed ID: 2887644 [TBL] [Abstract][Full Text] [Related]
31. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. Campion KN; Saville KA; Morgan MM Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986 [TBL] [Abstract][Full Text] [Related]
32. Inhibitory effects evoked from both the lateral and ventrolateral periaqueductal grey are selective for the nociceptive responses of rat dorsal horn neurones. Waters AJ; Lumb BM Brain Res; 1997 Mar; 752(1-2):239-49. PubMed ID: 9106463 [TBL] [Abstract][Full Text] [Related]
33. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat. Sandkühler J; Gebhart GF Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063 [TBL] [Abstract][Full Text] [Related]
34. Supraspinal morphine and descending inhibitions acting on the dorsal horn of the rat. Dickenson AH; Le Bars D J Physiol; 1987 Mar; 384():81-107. PubMed ID: 3309265 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of spinal nociceptive neurons by microinjections of somatostatin into the nucleus raphe magnus and the midbrain periaqueductal gray of the anesthetized cat. Helmchen C; Fu QG; Sandkühler J Neurosci Lett; 1995 Mar; 187(2):137-41. PubMed ID: 7783961 [TBL] [Abstract][Full Text] [Related]
36. Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat. Bouhassira D; Villanueva L; Le Bars D J Pharmacol Exp Ther; 1988 Oct; 247(1):332-42. PubMed ID: 3171978 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Bennett GJ; Mayer DJ Brain Res; 1979 Aug; 172(2):243-57. PubMed ID: 466474 [TBL] [Abstract][Full Text] [Related]
38. Ketamine analgesia is not related to an opiate action in the periaqueductal gray region of the rat brain. Smith DJ; Perrotti JM; Mansell AL; Monroe PJ Pain; 1985 Mar; 21(3):253-265. PubMed ID: 2986072 [TBL] [Abstract][Full Text] [Related]
39. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats. Tortorici V; Nogueira L; Salas R; Vanegas H Pain; 2003 Mar; 102(1-2):9-16. PubMed ID: 12620592 [TBL] [Abstract][Full Text] [Related]
40. Tolerance to morphine microinjections in the periaqueductal gray (PAG) induces tolerance to systemic, but not intrathecal morphine. Siuciak JA; Advokat C Brain Res; 1987 Oct; 424(2):311-9. PubMed ID: 3676830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]