These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1980535)
41. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons. Tortorici V; Morgan MM J Neurophysiol; 2002 Oct; 88(4):1707-15. PubMed ID: 12364500 [TBL] [Abstract][Full Text] [Related]
42. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat. Ness TJ; Gebhart GF J Neurophysiol; 1987 Oct; 58(4):850-65. PubMed ID: 2824712 [TBL] [Abstract][Full Text] [Related]
43. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. Budai D; Fields HL J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431 [TBL] [Abstract][Full Text] [Related]
44. The role of TNFα in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Hao S; Liu S; Zheng X; Zheng W; Ouyang H; Mata M; Fink DJ Neuropsychopharmacology; 2011 Feb; 36(3):664-76. PubMed ID: 21068718 [TBL] [Abstract][Full Text] [Related]
45. Antinociceptive effect of agonists microinjected into the anterior pretectal nucleus of the rat. Prado WA Brain Res; 1989 Jul; 493(1):147-54. PubMed ID: 2570617 [TBL] [Abstract][Full Text] [Related]
46. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia. Inui K; Nosaka S J Neurophysiol; 1993 Dec; 70(6):2205-14. PubMed ID: 7907131 [TBL] [Abstract][Full Text] [Related]
47. Differential inhibitory effects of medial and lateral midbrain stimulation on spinal neuronal discharges to noxious skin heating in the cat. Carstens E; Klumpp D; Zimmermann M J Neurophysiol; 1980 Feb; 43(2):332-42. PubMed ID: 7381524 [TBL] [Abstract][Full Text] [Related]
48. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Pertovaara A; Kontinen VK; Kalso EA Exp Neurol; 1997 Oct; 147(2):428-36. PubMed ID: 9344567 [TBL] [Abstract][Full Text] [Related]
49. Morphine analgesia in the formalin test: reversal by microinjection of quaternary naloxone into the posterior hypothalamic area or periaqueductal gray. Manning BH; Franklin KB Behav Brain Res; 1998 Apr; 92(1):97-102. PubMed ID: 9588689 [TBL] [Abstract][Full Text] [Related]
50. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats. Pavlovic ZW; Cooper ML; Bodnar RJ Brain Res; 1996 Nov; 741(1-2):13-26. PubMed ID: 9001699 [TBL] [Abstract][Full Text] [Related]
51. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray. Morgan MM; Whitney PK; Gold MS Brain Res; 1998 Aug; 804(1):159-66. PubMed ID: 9729359 [TBL] [Abstract][Full Text] [Related]
52. Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray. Taylor BK; Basbaum AI J Neurochem; 2003 Sep; 86(5):1129-41. PubMed ID: 12911621 [TBL] [Abstract][Full Text] [Related]
53. The differential contribution of spinopetal projections to increases in vocalization and motor reflex thresholds generated by the microinjection of morphine into the periaqueductal gray. Borszcz GS; Johnson CP; Thorp MV Behav Neurosci; 1996 Apr; 110(2):368-88. PubMed ID: 8731064 [TBL] [Abstract][Full Text] [Related]
54. The role of glutamate in opiate descending inhibition of nociceptive spinal reflexes. van Praag H; Frenk H Brain Res; 1990 Jul; 524(1):101-5. PubMed ID: 1976028 [TBL] [Abstract][Full Text] [Related]
55. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission. Ren K; Randich A; Gebhart GF J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352 [TBL] [Abstract][Full Text] [Related]
56. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336 [TBL] [Abstract][Full Text] [Related]
57. Activation of mu opioid receptors in the ventrolateral periaqueductal gray inhibits reflex micturition in anesthetized rats. Matsumoto S; Levendusky MC; Longhurst PA; Levin RM; Millington WR Neurosci Lett; 2004 Jun; 363(2):116-9. PubMed ID: 15172097 [TBL] [Abstract][Full Text] [Related]
58. Spinal cholinergic and monoamine receptors mediate the antinociceptive effect of morphine microinjected in the periaqueductal gray on the rat tail, but not the feet. Fang F; Proudfit HK Brain Res; 1996 May; 722(1-2):95-108. PubMed ID: 8813354 [TBL] [Abstract][Full Text] [Related]
59. Characteristics of propriospinal modulation of nociceptive lumbar spinal dorsal horn neurons in the cat. Sandkühler J; Stelzer B; Fu QG Neuroscience; 1993 Jun; 54(4):957-67. PubMed ID: 7688106 [TBL] [Abstract][Full Text] [Related]
60. Responses of rat spinal dorsal horn neurons to intracutaneous microinjection of histamine, capsaicin, and other irritants. Carstens E J Neurophysiol; 1997 May; 77(5):2499-514. PubMed ID: 9163372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]