These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine. McComb RC; Ho CL; Bradley KA; Grill LK; Martchenko M Vaccine; 2015 Nov; 33(48):6745-51. PubMed ID: 26514421 [TBL] [Abstract][Full Text] [Related]
11. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine. Yin Y; Zhang S; Cai C; Zhang J; Dong D; Guo Q; Fu L; Xu J; Chen W Immunobiology; 2014 Feb; 219(2):97-103. PubMed ID: 24054942 [TBL] [Abstract][Full Text] [Related]
12. Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. Abboud N; Casadevall A Clin Vaccine Immunol; 2008 Jul; 15(7):1115-23. PubMed ID: 18480236 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of antibody responses to Bacillus anthracis protective antigen domain IV by use of calreticulin as a chimeric molecular adjuvant. Park YS; Lee JH; Hung CF; Wu TC; Kim TW Infect Immun; 2008 May; 76(5):1952-9. PubMed ID: 18285494 [TBL] [Abstract][Full Text] [Related]
14. CD1d-dependent B-cell help by NK-like T cells leads to enhanced and sustained production of Bacillus anthracis lethal toxin-neutralizing antibodies. Devera TS; Aye LM; Lang GA; Joshi SK; Ballard JD; Lang ML Infect Immun; 2010 Apr; 78(4):1610-7. PubMed ID: 20123711 [TBL] [Abstract][Full Text] [Related]
15. The major neutralizing antibody responses to recombinant anthrax lethal and edema factors are directed to non-cross-reactive epitopes. Nguyen ML; Terzyan S; Ballard JD; James JA; Farris AD Infect Immun; 2009 Nov; 77(11):4714-23. PubMed ID: 19720758 [TBL] [Abstract][Full Text] [Related]
16. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Gorantala J; Grover S; Goel D; Rahi A; Jayadev Magani SK; Chandra S; Bhatnagar R Vaccine; 2011 Jun; 29(27):4521-33. PubMed ID: 21504775 [TBL] [Abstract][Full Text] [Related]
17. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin. Oscherwitz J; Cease KB PLoS One; 2015; 10(1):e0116882. PubMed ID: 25635901 [TBL] [Abstract][Full Text] [Related]
18. Selection and evaluation of the immunogenicity of protective antigen mutants as anthrax vaccine candidates. Yan M; Roehrl MH; Basar E; Wang JY Vaccine; 2008 Feb; 26(7):947-55. PubMed ID: 18192092 [TBL] [Abstract][Full Text] [Related]
19. An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Wimer-Mackin S; Hinchcliffe M; Petrie CR; Warwood SJ; Tino WT; Williams MS; Stenz JP; Cheff A; Richardson C Vaccine; 2006 May; 24(18):3953-63. PubMed ID: 16530302 [TBL] [Abstract][Full Text] [Related]
20. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Chichester JA; Manceva SD; Rhee A; Coffin MV; Musiychuk K; Mett V; Shamloul M; Norikane J; Streatfield SJ; Yusibov V Hum Vaccin Immunother; 2013 Mar; 9(3):544-52. PubMed ID: 23324615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]