These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 19805537)
21. Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium perfringens type C enteritis in pigs. Schumacher VL; Martel A; Pasmans F; Van Immerseel F; Posthaus H Vet Pathol; 2013 Jul; 50(4):626-9. PubMed ID: 23012387 [TBL] [Abstract][Full Text] [Related]
22. A recombinant carboxy-terminal domain of alpha-toxin protects mice against Clostridium perfringens. Nagahama M; Oda M; Kobayashi K; Ochi S; Takagishi T; Shibutani M; Sakurai J Microbiol Immunol; 2013 May; 57(5):340-5. PubMed ID: 23668605 [TBL] [Abstract][Full Text] [Related]
23. Heterologous protection against alpha toxins of Clostridium perfringens and Staphylococcus aureus induced by binding domain recombinant chimeric protein. Uppalapati SR; Kingston JJ; Murali HS; Batra HV Vaccine; 2014 May; 32(25):3075-81. PubMed ID: 24699467 [TBL] [Abstract][Full Text] [Related]
24. Cross-complementation of Clostridium perfringens PLC and Clostridium septicum alpha-toxin mutants reveals PLC is sufficient to mediate gas gangrene. Kennedy CL; Lyras D; Cheung JK; Hiscox TJ; Emmins JJ; Rood JI Microbes Infect; 2009 Mar; 11(3):413-8. PubMed ID: 19284973 [TBL] [Abstract][Full Text] [Related]
25. Recombinant attenuated Salmonella enterica serovar typhimurium expressing the carboxy-terminal domain of alpha toxin from Clostridium perfringens induces protective responses against necrotic enteritis in chickens. Zekarias B; Mo H; Curtiss R Clin Vaccine Immunol; 2008 May; 15(5):805-16. PubMed ID: 18337376 [TBL] [Abstract][Full Text] [Related]
26. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Vidal JE; McClane BA; Saputo J; Parker J; Uzal FA Infect Immun; 2008 Oct; 76(10):4396-404. PubMed ID: 18625730 [TBL] [Abstract][Full Text] [Related]
27. Potential protective immunogenicity of recombinant Clostridium perfringens α-β2-β1 fusion toxin in mice, sows and cows. Zeng J; Deng G; Wang J; Zhou J; Liu X; Xie Q; Wang Y Vaccine; 2011 Jul; 29(33):5459-66. PubMed ID: 21641956 [TBL] [Abstract][Full Text] [Related]
28. Clostridium perfringens alpha toxin is produced in the intestines of broiler chicks inoculated with an alpha toxin mutant. Coursodon CF; Trinh HT; Mallozzi M; Vedantam G; Glock RD; Songer JG Anaerobe; 2010 Dec; 16(6):614-7. PubMed ID: 20934524 [TBL] [Abstract][Full Text] [Related]
29. Generation and characterization of recombinant bivalent fusion protein r-Cpib for immunotherapy against Clostridium perfringens beta and iota toxemia. Das S; Majumder S; Kingston JJ; Batra HV Mol Immunol; 2016 Feb; 70():140-8. PubMed ID: 26774054 [TBL] [Abstract][Full Text] [Related]
30. Detection of beta2 and major toxin genes by PCR in Clostridium perfringens field isolates of domestic animals suffering from enteritis or enterotoxaemia. Sting R Berl Munch Tierarztl Wochenschr; 2009; 122(9-10):341-7. PubMed ID: 19863004 [TBL] [Abstract][Full Text] [Related]
31. Immunization with an alphatoxin variant 121A/91-R212H protects mice against Clostridium perfringens alphatoxin. Schoepe H; Neubauer A; Schlapp T; Wieler LH; Baljer G Anaerobe; 2006 Feb; 12(1):44-8. PubMed ID: 16701610 [TBL] [Abstract][Full Text] [Related]
32. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Awad MM; Bryant AE; Stevens DL; Rood JI Mol Microbiol; 1995 Jan; 15(2):191-202. PubMed ID: 7746141 [TBL] [Abstract][Full Text] [Related]
33. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice. Losada-Eaton DM; Uzal FA; Fernández Miyakawa ME Toxicon; 2008 Jun; 51(7):1207-13. PubMed ID: 18457853 [TBL] [Abstract][Full Text] [Related]
34. Molecular variation between the alpha-toxins from the type strain (NCTC 8237) and clinical isolates of Clostridium perfringens associated with disease in man and animals. Ginter A; Williamson ED; Dessy F; Coppe P; Bullifent H; Howells A; Titball RW Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():191-198. PubMed ID: 8581165 [TBL] [Abstract][Full Text] [Related]
35. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues. Yagi H; Nakayama-Imaohji H; Nariya H; Tada A; Yamasaki H; Ugai H; Elahi M; Ono T; Kuwahara T Microb Pathog; 2018 Jun; 119():200-207. PubMed ID: 29654901 [TBL] [Abstract][Full Text] [Related]
36. Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Ellemor DM; Baird RN; Awad MM; Boyd RL; Rood JI; Emmins JJ Infect Immun; 1999 Sep; 67(9):4902-7. PubMed ID: 10456947 [TBL] [Abstract][Full Text] [Related]
37. Toxigenic characteristics of Clostridium perfringens type C in enterotoxemia of domestic animals. Niilo L Can J Vet Res; 1987 Apr; 51(2):224-8. PubMed ID: 2886206 [TBL] [Abstract][Full Text] [Related]
38. The Barrier Disruption and Pyroptosis of Intestinal Epithelial Cells Caused by Perfringolysin O (PFO) from Liu Z; Mou S; Li L; Chen Q; Yang R; Guo S; Jin Y; Liu L; Li T; Chen H; Wang X Cells; 2024 Jul; 13(13):. PubMed ID: 38994991 [No Abstract] [Full Text] [Related]
39. A chicken intestinal ligated loop model to study the virulence of Clostridium perfringens isolates recovered from antibiotic-free chicken flocks. Parent E; Archambault M; Charlebois A; Bernier-Lachance J; Boulianne M Avian Pathol; 2017 Apr; 46(2):138-149. PubMed ID: 27917645 [TBL] [Abstract][Full Text] [Related]
40. Evidence That VirS Is a Receptor for the Signaling Peptide of the Clostridium perfringens Agr-like Quorum Sensing System. Li J; McClane BA mBio; 2020 Sep; 11(5):. PubMed ID: 32934089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]