These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19806182)

  • 1. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
    Meyer S; Böhme S; Krüger A; Steinhoff HJ; Klare JP; Wittinghofer A
    PLoS Biol; 2009 Oct; 7(10):e1000212. PubMed ID: 19806182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex.
    Meyer S; Wittinghofer A; Versées W
    J Mol Biol; 2009 Oct; 392(4):910-22. PubMed ID: 19591841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of G domain conformations in the tRNA-modifying MnmE-GidA complex observed with double electron electron resonance spectroscopy.
    Böhme S; Meyer S; Krüger A; Steinhoff HJ; Wittinghofer A; Klare JP
    J Biol Chem; 2010 May; 285(22):16991-7000. PubMed ID: 20353943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization.
    Fislage M; Brosens E; Deyaert E; Spilotros A; Pardon E; Loris R; Steyaert J; Garcia-Pino A; Versées W
    Nucleic Acids Res; 2014 May; 42(9):5978-92. PubMed ID: 24634441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function.
    Yim L; Martínez-Vicente M; Villarroya M; Aguado C; Knecht E; Armengod ME
    J Biol Chem; 2003 Aug; 278(31):28378-87. PubMed ID: 12730230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly and function of the tRNA-modifying GTPase MnmE adsorbed to surface functionalized bioactive glass.
    Gruian C; Boehme S; Simon S; Steinhoff HJ; Klare JP
    ACS Appl Mater Interfaces; 2014 May; 6(10):7615-25. PubMed ID: 24785159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
    Scrima A; Wittinghofer A
    EMBO J; 2006 Jun; 25(12):2940-51. PubMed ID: 16763562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain arrangement of Der, a switch protein containing two GTPase domains.
    Robinson VL; Hwang J; Fox E; Inouye M; Stock AM
    Structure; 2002 Dec; 10(12):1649-58. PubMed ID: 12467572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle.
    Prado S; Villarroya M; Medina M; Armengod ME
    Nucleic Acids Res; 2013 Jul; 41(12):6190-208. PubMed ID: 23630314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site.
    Focia PJ; Gawronski-Salerno J; Coon JS; Freymann DM
    J Mol Biol; 2006 Jul; 360(3):631-43. PubMed ID: 16780874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide recognition by the initiation factor aIF5B: free energy simulations of a neoclassical GTPase.
    Simonson T; Satpati P
    Proteins; 2012 Dec; 80(12):2742-57. PubMed ID: 22887821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.
    Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP
    Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The initiation of GTP hydrolysis by the G-domain of FeoB: insights from a transition-state complex structure.
    Ash MR; Maher MJ; Guss JM; Jormakka M
    PLoS One; 2011; 6(8):e23355. PubMed ID: 21858085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms.
    Niemann HH; Knetsch ML; Scherer A; Manstein DJ; Kull FJ
    EMBO J; 2001 Nov; 20(21):5813-21. PubMed ID: 11689422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. It takes two to tango: regulation of G proteins by dimerization.
    Gasper R; Meyer S; Gotthardt K; Sirajuddin M; Wittinghofer A
    Nat Rev Mol Cell Biol; 2009 Jun; 10(6):423-9. PubMed ID: 19424291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-state targeting machinery govern the fidelity and efficiency of protein localization.
    Yang M; Pang X; Han K
    Adv Exp Med Biol; 2014; 805():385-409. PubMed ID: 24446370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GAP-GTPase-GDP-P
    Molt RW; Pellegrini E; Jin Y
    Chemistry; 2019 Jun; 25(36):8484-8488. PubMed ID: 31038818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.