BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 19806221)

  • 1. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments.
    Qin Z; Kreplak L; Buehler MJ
    PLoS One; 2009 Oct; 4(10):e7294. PubMed ID: 19806221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading.
    Forsting J; Kraxner J; Witt H; Janshoff A; Köster S
    Nano Lett; 2019 Oct; 19(10):7349-7356. PubMed ID: 31498648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical properties of vimentin intermediate filament dimers.
    Qin Z; Kreplak L; Buehler MJ
    Nanotechnology; 2009 Oct; 20(42):425101. PubMed ID: 19779230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system.
    Plodinec M; Loparic M; Suetterlin R; Herrmann H; Aebi U; Schoenenberger CA
    J Struct Biol; 2011 Jun; 174(3):476-84. PubMed ID: 21426942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry.
    Schopferer M; Bär H; Hochstein B; Sharma S; Mücke N; Herrmann H; Willenbacher N
    J Mol Biol; 2009 Apr; 388(1):133-43. PubMed ID: 19281820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
    Guzmán C; Jeney S; Kreplak L; Kasas S; Kulik AJ; Aebi U; Forró L
    J Mol Biol; 2006 Jul; 360(3):623-30. PubMed ID: 16765985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the flexibility of intermediate filaments by atomic force microscopy.
    Mücke N; Kreplak L; Kirmse R; Wedig T; Herrmann H; Aebi U; Langowski J
    J Mol Biol; 2004 Jan; 335(5):1241-50. PubMed ID: 14729340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models.
    Qin Z; Buehler MJ
    J Mol Model; 2011 Jan; 17(1):37-48. PubMed ID: 20358386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Nano Lett; 2011 Feb; 11(2):757-66. PubMed ID: 21207932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks.
    Sapra KT; Medalia O
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformability of Human Mesenchymal Stem Cells Is Dependent on Vimentin Intermediate Filaments.
    Sharma P; Bolten ZT; Wagner DR; Hsieh AH
    Ann Biomed Eng; 2017 May; 45(5):1365-1374. PubMed ID: 28091965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique Role of Vimentin in the Intermediate Filament Proteins Family.
    Alieva IB; Shakhov AS; Dayal AA; Churkina AS; Parfenteva OI; Minin AA
    Biochemistry (Mosc); 2024 Apr; 89(4):726-736. PubMed ID: 38831508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Subunit Coupling Determines Intermediate Filament Mechanics.
    Lorenz C; Forsting J; Schepers AV; Kraxner J; Bauch S; Witt H; Klumpp S; Köster S
    Phys Rev Lett; 2019 Nov; 123(18):188102. PubMed ID: 31763918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of Single Vimentin Intermediate Filaments Under Load.
    Schepers AV; Kraxner J; Lorenz C; Köster S
    Methods Mol Biol; 2022; 2478():677-700. PubMed ID: 36063338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the mechanical behavior of single intermediate filaments.
    Kreplak L; Bär H; Leterrier JF; Herrmann H; Aebi U
    J Mol Biol; 2005 Dec; 354(3):569-77. PubMed ID: 16257415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning intermediate filament mechanics by variation of pH and ion charges.
    Schepers AV; Lorenz C; Köster S
    Nanoscale; 2020 Jul; 12(28):15236-15245. PubMed ID: 32642745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale mechanics and temporal evolution of vimentin intermediate filament networks.
    Schepers AV; Lorenz C; Nietmann P; Janshoff A; Klumpp S; Köster S
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34187892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.
    Smoler M; Coceano G; Testa I; Bruno L; Levi V
    Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118726. PubMed ID: 32320724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.
    Chernyatina AA; Nicolet S; Aebi U; Herrmann H; Strelkov SV
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13620-5. PubMed ID: 22869704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.