These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1980625)

  • 41. Replacement of all alpha-domain lysines with glutamates reduces metallothionein detoxification function.
    Cody CW; Huang PC
    Biochem Biophys Res Commun; 1994 Jul; 202(2):954-9. PubMed ID: 7914080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum.
    Taddei L; Stella GR; Rogato A; Bailleul B; Fortunato AE; Annunziata R; Sanges R; Thaler M; Lepetit B; Lavaud J; Jaubert M; Finazzi G; Bouly JP; Falciatore A
    J Exp Bot; 2016 Jun; 67(13):3939-51. PubMed ID: 27225826
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress.
    T V D; Chandwadkar P; Acharya C
    Aquat Toxicol; 2018 Jun; 199():152-161. PubMed ID: 29626757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum.
    Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I
    FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osmotic regulation of photosynthetic glycerol production in Dunaliella.
    Wegmann K
    Biochim Biophys Acta; 1971 Jun; 234(3):317-23. PubMed ID: 5117572
    [No Abstract]   [Full Text] [Related]  

  • 47. Chiral copper(I)-thiolate clusters in metallothionein and glutathione.
    Presta A; Stillman MJ
    Chirality; 1994; 6(7):521-30. PubMed ID: 7986666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A method of distinguishing between aspartic acid and asparagine and between glutamic acid and glutamine during sequence analysis by the dansyl-Edman procedure.
    Airoldi LP; Doonan S
    FEBS Lett; 1975 Feb; 50(2):155-8. PubMed ID: 1089562
    [No Abstract]   [Full Text] [Related]  

  • 49. Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge.
    Wang L; Song L; Ni D; Zhang H; Liu W
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jan; 149(1):50-7. PubMed ID: 18662805
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plastidic phosphoglycerate kinase from Phaeodactylum tricornutum: on the critical role of cysteine residues for the enzyme function.
    Bosco MB; Aleanzi MC; Iglesias AÁ
    Protist; 2012 Mar; 163(2):188-203. PubMed ID: 21816671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.
    Feng TY; Yang ZK; Zheng JW; Xie Y; Li DW; Murugan SB; Yang WD; Liu JS; Li HY
    Sci Rep; 2015 May; 5():10373. PubMed ID: 26020491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sodium-dependent uptake of nitrate and urea by a marine diatom.
    Rees TA; Cresswell RC; Syrett PJ
    Biochim Biophys Acta; 1980 Feb; 596(1):141-4. PubMed ID: 7353005
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cadmium-induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels.
    Carginale V; Scudiero R; Capasso C; Capasso A; Kille P; di Prisco G; Parisi E
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):475-81. PubMed ID: 9601077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake.
    Morrissey J; Sutak R; Paz-Yepes J; Tanaka A; Moustafa A; Veluchamy A; Thomas Y; Botebol H; Bouget FY; McQuaid JB; Tirichine L; Allen AE; Lesuisse E; Bowler C
    Curr Biol; 2015 Feb; 25(3):364-371. PubMed ID: 25557662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum.
    Satoh D; Hiraoka Y; Colman B; Matsuda Y
    Plant Physiol; 2001 Aug; 126(4):1459-70. PubMed ID: 11500545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The identification, cloning and characterization of earthworm metallothionein.
    Stürzenbaum SR; Kille P; Morgan AJ
    FEBS Lett; 1998 Jul; 431(3):437-42. PubMed ID: 9714559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lead uptake in two marine phytoplankton organisms.
    Schulz-Baldes M; Lewin RA
    Biol Bull; 1976 Feb; 150(1):118-27. PubMed ID: 1252545
    [No Abstract]   [Full Text] [Related]  

  • 58. Myosin diversity in the diatom Phaeodactylum tricornutum.
    Heintzelman MB; Enriquez ME
    Cytoskeleton (Hoboken); 2010 Mar; 67(3):142-51. PubMed ID: 20217677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoinduced toxicity of selected PAHs to the marine microalga Phaeodactylum tricornutum.
    Okay OS; Karacik B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 May; 42(6):707-14. PubMed ID: 17473996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antarctica.
    Cabrita MT; Padeiro A; Amaro E; Dos Santos MC; Leppe M; Verkulich S; Hughes KA; Peter HU; Canário J
    Mar Pollut Bull; 2017 Aug; 121(1-2):192-200. PubMed ID: 28601436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.