These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19806733)

  • 1. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media.
    Bradford SA; Kim HN; Haznedaroglu BZ; Torkzaban S; Walker SL
    Environ Sci Technol; 2009 Sep; 43(18):6996-7002. PubMed ID: 19806733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration dependent transport of colloids in saturated porous media.
    Bradford SA; Bettahar M
    J Contam Hydrol; 2006 Jan; 82(1-2):99-117. PubMed ID: 16290313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of colloid particles onto interfaces in partially saturated sand.
    Zevi Y; Dathe A; McCarthy JF; Richards BK; Steenhuis TS
    Environ Sci Technol; 2005 Sep; 39(18):7055-64. PubMed ID: 16201629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.
    Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS
    Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling.
    Vitorge E; Szenknect S; Martins JM; Gaudet JP
    Environ Sci Process Impacts; 2013 Aug; 15(8):1590-600. PubMed ID: 23812006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of barrel and spherical shaped colloids in unsaturated porous media.
    Knappenberger T; Aramrak S; Flury M
    J Contam Hydrol; 2015 Sep; 180():69-79. PubMed ID: 26275396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causes and implications of colloid and microorganism retention hysteresis.
    Bradford SA; Kim H
    J Contam Hydrol; 2012 Sep; 138-139():83-92. PubMed ID: 22820488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media.
    Sasidharan S; Bradford SA; Torkzaban S; Ye X; Vanderzalm J; Du X; Page D
    Sci Total Environ; 2017 Dec; 603-604():406-415. PubMed ID: 28641182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists.
    Johnson WP; Rasmuson A; PazmiƱo E; Hilpert M
    Environ Sci Technol; 2018 Jul; 52(13):7230-7239. PubMed ID: 29888906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property.
    Zhuang J; Qi J; Jin Y
    Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers.
    Ma H; Pazmino E; Johnson WP
    Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.
    Bradford SA; Torkzaban S
    Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3769-74. PubMed ID: 16830540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.