BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19806800)

  • 1. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.
    Hudacko A; Sievert A; Sistino J
    J Extra Corpor Technol; 2009 Sep; 41(3):166-71. PubMed ID: 19806800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach.
    Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A
    Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum-assisted venous drainage and gaseous microemboli in cardiopulmonary bypass.
    Wang S; Undar A
    J Extra Corpor Technol; 2008 Dec; 40(4):249-56. PubMed ID: 19192754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of Capiox FX05 and RX05 oxygenators in neonatal cardiopulmonary bypass circuits with varying venous reservoir and vacuum-assisted venous drainage levels.
    Sathianathan S; Nasir R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2020 Jan; 44(1):28-39. PubMed ID: 30512218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.
    Qiu F; Peng S; Kunselman A; Ündar A
    Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure.
    Lou S; Ji B; Liu J; Yu K; Long C
    Int J Artif Organs; 2011 Nov; 34(11):1039-51. PubMed ID: 22183517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst?
    Willcox TW
    J Extra Corpor Technol; 2002 Mar; 34(1):24-8. PubMed ID: 11911625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass.
    Wang S; Woitas K; Clark JB; Myers JL; Undar A
    Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC.
    Stanzel RD; Henderson M
    Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuum assist: angel or demon CON.
    Willcox TW
    J Extra Corpor Technol; 2013 Jun; 45(2):128-32. PubMed ID: 23930383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population.
    Preston TJ; Gomez D; Olshove VF; Phillips A; Galantowicz M
    J Extra Corpor Technol; 2009 Dec; 41(4):226-30. PubMed ID: 20092077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass?
    Jones TJ; Deal DD; Vernon JC; Blackburn N; Stump DA
    Ann Thorac Surg; 2002 Dec; 74(6):2132-7. PubMed ID: 12643407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring microemboli during cardiopulmonary bypass with the EDAC quantifier.
    Lynch JE; Wells C; Akers T; Frantz P; Garrett D; Scott ML; Williamson L; Agnew B; Lynch JK
    J Extra Corpor Technol; 2010 Sep; 42(3):212-8. PubMed ID: 21114224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.