These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19807062)

  • 1. The ATP-dependent amide ligases DdaG and DdaF assemble the fumaramoyl-dipeptide scaffold of the dapdiamide antibiotics.
    Hollenhorst MA; Clardy J; Walsh CT
    Biochemistry; 2009 Nov; 48(43):10467-72. PubMed ID: 19807062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonribosomal peptide synthetase enzyme DdaD tethers N(β)-fumaramoyl-l-2,3-diaminopropionate for Fe(II)/α-ketoglutarate-dependent epoxidation by DdaC during dapdiamide antibiotic biosynthesis.
    Hollenhorst MA; Bumpus SB; Matthews ML; Bollinger JM; Kelleher NL; Walsh CT
    J Am Chem Soc; 2010 Nov; 132(44):15773-81. PubMed ID: 20945916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A head-to-head comparison of eneamide and epoxyamide inhibitors of glucosamine-6-phosphate synthase from the dapdiamide biosynthetic pathway.
    Hollenhorst MA; Ntai I; Badet B; Kelleher NL; Walsh CT
    Biochemistry; 2011 May; 50(19):3859-61. PubMed ID: 21520904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dapdiamides, tripeptide antibiotics formed by unconventional amide ligases.
    Dawlaty J; Zhang X; Fischbach MA; Clardy J
    J Nat Prod; 2010 Mar; 73(3):441-6. PubMed ID: 20041689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism.
    Walker H; Ferretti JA; Stadtman TC
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2180-5. PubMed ID: 9482859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ATP-Dependent Ligase with Substrate Flexibility Involved in Assembly of the Peptidyl Nucleoside Antibiotic Polyoxin.
    Gong R; Qi J; Wu P; Cai YS; Ma H; Liu Y; Duan H; Wang M; Deng Z; Price NPJ; Chen W
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29703734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7.
    Roush RF; Nolan EM; Löhr F; Walsh CT
    J Am Chem Soc; 2008 Mar; 130(11):3603-9. PubMed ID: 18290647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP and ATP as products of AMP in rat liver extracts.
    Vannoni D; Leoncini R; Pagani R; Marinello E
    Biochem Soc Trans; 1992 Nov; 20(4):383S. PubMed ID: 1487042
    [No Abstract]   [Full Text] [Related]  

  • 9. Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression.
    Blasiak LC; Clardy J
    J Am Chem Soc; 2010 Jan; 132(3):926-7. PubMed ID: 20041686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pharmacology and kinetics of ecto-nucleotidases in the perilymphatic compartment of the guinea-pig cochlea.
    Vlajkovic SM; Thorne PR; Housley GD; Muñoz DJ; Kendrick IS
    Hear Res; 1998 Mar; 117(1-2):71-80. PubMed ID: 9580435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribose 1-phosphate dependent formation of ADP and ATP in rat liver extracts.
    Vannoni D; Leoncini R; Guerranti R; Righi S; Pagani R; Marinello E
    Biochem Soc Trans; 1992 Nov; 20(4):382S. PubMed ID: 1487041
    [No Abstract]   [Full Text] [Related]  

  • 12. X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 A resolution.
    Li C; Kappock TJ; Stubbe J; Weaver TM; Ealick SE
    Structure; 1999 Sep; 7(9):1155-66. PubMed ID: 10508786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of adenosine 5'-monophosphate by a dialyzed cell-free extract from Escherichia coli.
    Chalykoff P; Yamazaki H
    Can J Biochem; 1978 Aug; 56(8):838-41. PubMed ID: 356939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP is converted to ADP and ATP in the medium before it is bound to coupling factor 1 in illuminated spinach chloroplast thylakoids.
    McCarty RE
    FEBS Lett; 1978 Nov; 95(2):299-302. PubMed ID: 152718
    [No Abstract]   [Full Text] [Related]  

  • 15. Insights into the Mechanism of the Cyanobactin Heterocyclase Enzyme.
    Ge Y; Czekster CM; Miller OK; Botting CH; Schwarz-Linek U; Naismith JH
    Biochemistry; 2019 Apr; 58(16):2125-2132. PubMed ID: 30912640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of Oligopeptides Using ATP-Grasp Enzymes.
    Ogasawara Y; Dairi T
    Chemistry; 2017 Aug; 23(45):10714-10724. PubMed ID: 28488371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an unusual AT(D)Pase-like activity in multifunctional NAD glycohydrolase from the venom of Agkistrodon acutus.
    Zhang L; Xu X; Luo Z; Shen D; Wu H
    Biochimie; 2009 Feb; 91(2):240-51. PubMed ID: 18952139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous pH stat assay technique for glutamine and asparagine synthetase enzyme systems, involving ATP conversion to ADP plus Pi and AMP plus PPi, respectively.
    Wedler FC; McClune G
    Anal Biochem; 1974 Jun; 59(2):347-53. PubMed ID: 4151971
    [No Abstract]   [Full Text] [Related]  

  • 19. AMPK is a direct adenylate charge-regulated protein kinase.
    Oakhill JS; Steel R; Chen ZP; Scott JW; Ling N; Tam S; Kemp BE
    Science; 2011 Jun; 332(6036):1433-5. PubMed ID: 21680840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between adenine nucleotide-induced cyclic AMP elevation and extracellular adenosine formation in NG108-15 cells.
    Ohkubo S; Kimura J; Matsuoka I
    Jpn J Pharmacol; 2000 Nov; 84(3):325-33. PubMed ID: 11138734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.