BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19807192)

  • 1. Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of high-resolution transmission electron microscopy and ab initio surface energy calculations.
    Stroppa DG; Montoro LA; Beltrán A; Conti TG; da Silva RO; Andrés J; Longo E; Leite ER; Ramirez AJ
    J Am Chem Soc; 2009 Oct; 131(40):14544-8. PubMed ID: 19807192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopant segregation analysis on Sb:SnO2 nanocrystals.
    Stroppa DG; Montoro LA; Beltrán A; Conti TG; da Silva RO; Andrés J; Leite ER; Ramirez AJ
    Chemistry; 2011 Oct; 17(41):11515-9. PubMed ID: 21953929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEGACELL: a nanocrystal model construction software for HRTEM multislice simulation.
    Stroppa DG; Righetto RD; Montoro LA; Ramirez AJ
    Ultramicroscopy; 2011 Jul; 111(8):1077-82. PubMed ID: 21740871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Simulating synthesis": ceria nanosphere self-assembly into nanorods and framework architectures.
    Sayle DC; Feng X; Ding Y; Wang ZL; Sayle TX
    J Am Chem Soc; 2007 Jun; 129(25):7924-35. PubMed ID: 17547398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On doping CdS/ZnS core/shell nanocrystals with Mn.
    Yang Y; Chen O; Angerhofer A; Cao YC
    J Am Chem Soc; 2008 Nov; 130(46):15649-61. PubMed ID: 18950179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and surface control of colloidal Cr3+-doped SnO2 transparent magnetic semiconductor nanocrystals.
    Dave N; Pautler BG; Farvid SS; Radovanovic PV
    Nanotechnology; 2010 Apr; 21(13):134023. PubMed ID: 20208107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast electron transfer between molecule adsorbate and antimony doped tin oxide (ATO) nanoparticles.
    Guo J; She C; Lian T
    J Phys Chem B; 2005 Apr; 109(15):7095-102. PubMed ID: 16851808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative high resolution transmission electron microscopy of nanostructured semiconductors.
    Neumann W; Kirmse H; Häusler I; Otto R
    J Microsc; 2006 Sep; 223(Pt 3):200-4. PubMed ID: 17059529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-sensing properties of needle-shaped Ni-doped SnO2 nanocrystals prepared by a simple sol-gel chemical precipitation method.
    Yogamalar R; Mahendran V; Srinivasan R; Beitollahi A; Kumar RP; Bose AC; Vinu A
    Chem Asian J; 2010 Nov; 5(11):2379-85. PubMed ID: 20839275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pure multistep oriented attachment growth kinetics of surfactant-free SnO2 nanocrystals.
    Zhuang Z; Zhang J; Huang F; Wang Y; Lin Z
    Phys Chem Chem Phys; 2009 Oct; 11(38):8516-21. PubMed ID: 19774282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide.
    Yang Y; Jin Y; He H; Wang Q; Tu Y; Lu H; Ye Z
    J Am Chem Soc; 2010 Sep; 132(38):13381-94. PubMed ID: 20825193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of dopant atom distribution on nanocrystals using thermodynamic arguments.
    Stroppa DG; Montoro LA; Campello A; Gracia L; Beltrán A; Andrés J; Leite ER; Ramirez AJ
    Phys Chem Chem Phys; 2014 Jan; 16(3):1089-94. PubMed ID: 24287784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of silver substrates coated with antimony-doped SnO2 thin films for surface plasmon resonance studies.
    Manesse M; Sanjines R; Stambouli V; Jorel C; Pelissier B; Pisarek M; Boukherroub R; Szunerits S
    Langmuir; 2009 Jul; 25(14):8036-41. PubMed ID: 19594181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.
    Liu J
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):251-78. PubMed ID: 16123072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of lead chalcogenide nanocrystals by sequential ion implantation in silica.
    Espiau de Lamaestre R; Majimel J; Jomard F; Bernas H
    J Phys Chem B; 2005 Oct; 109(41):19148-55. PubMed ID: 16853469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2):Zn2+ nanocrystals.
    Li L; Liu J; Su Y; Li G; Chen X; Qiu X; Yan T
    Nanotechnology; 2009 Apr; 20(15):155706. PubMed ID: 19420558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping semiconductor nanocrystals.
    Erwin SC; Zu L; Haftel MI; Efros AL; Kennedy TA; Norris DJ
    Nature; 2005 Jul; 436(7047):91-4. PubMed ID: 16001066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals.
    Hansen PL; Wagner JB; Helveg S; Rostrup-Nielsen JR; Clausen BS; Topsøe H
    Science; 2002 Mar; 295(5562):2053-5. PubMed ID: 11896271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the erbium dopant architecture on the femtosecond relaxation dynamics of silicon nanocrystals.
    Samia AC; Lou Y; Burda C; Senter RA; Coffer JL
    J Chem Phys; 2004 May; 120(18):8716-23. PubMed ID: 15267802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.