These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19808109)
1. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: an anticipated analytical tool for food safety. Hervás M; López MA; Escarpa A Anal Chim Acta; 2009 Oct; 653(2):167-72. PubMed ID: 19808109 [TBL] [Abstract][Full Text] [Related]
2. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Hervás M; López MA; Escarpa A Analyst; 2011 May; 136(10):2131-8. PubMed ID: 21394379 [TBL] [Abstract][Full Text] [Related]
3. Simplified calibration and analysis on screen-printed disposable platforms for electrochemical magnetic bead-based immunosensing of zearalenone in baby food samples. Hervás M; López MA; Escarpa A Biosens Bioelectron; 2010 Mar; 25(7):1755-60. PubMed ID: 20097055 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Zacco E; Pividori MI; Alegret S; Galve R; Marco MP Anal Chem; 2006 Mar; 78(6):1780-8. PubMed ID: 16536412 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Hervás M; López MA; Escarpa A Analyst; 2009 Dec; 134(12):2405-11. PubMed ID: 19918609 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical magneto immunosensing of antibiotic residues in milk. Zacco E; Adrian J; Galve R; Marco MP; Alegret S; Pividori MI Biosens Bioelectron; 2007 Apr; 22(9-10):2184-91. PubMed ID: 17126544 [TBL] [Abstract][Full Text] [Related]
7. Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. Lermo A; Fabiano S; Hernández S; Galve R; Marco MP; Alegret S; Pividori MI Biosens Bioelectron; 2009 Mar; 24(7):2057-63. PubMed ID: 19084389 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food. Tang D; Zhong Z; Niessner R; Knopp D Analyst; 2009 Aug; 134(8):1554-60. PubMed ID: 20448920 [TBL] [Abstract][Full Text] [Related]
9. Novel chemiluminescence immunoassay for the determination of zearalenone in food samples using gold nanoparticles labeled with streptavidin-horseradish peroxidase. Wang YK; Yan YX; Ji WH; Wang HA; Zou Q; Sun JH J Agric Food Chem; 2013 May; 61(18):4250-6. PubMed ID: 23581862 [TBL] [Abstract][Full Text] [Related]
10. Bioelectrochemical immunoassay of polychlorinated biphenyl. Lin YY; Liu G; Wai CM; Lin Y Anal Chim Acta; 2008 Mar; 612(1):23-8. PubMed ID: 18331854 [TBL] [Abstract][Full Text] [Related]
11. Disposable and reliable electrochemical magnetoimmunosensor for Fumonisins simplified determination in maize-based foodstuffs. Jodra A; López MÁ; Escarpa A Biosens Bioelectron; 2015 Feb; 64():633-8. PubMed ID: 25441412 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Tang D; Su B; Tang J; Ren J; Chen G Anal Chem; 2010 Feb; 82(4):1527-34. PubMed ID: 20095621 [TBL] [Abstract][Full Text] [Related]
13. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels. Wang J; Liu G; Wu H; Lin Y Anal Chim Acta; 2008 Mar; 610(1):112-8. PubMed ID: 18267147 [TBL] [Abstract][Full Text] [Related]
14. Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads. Zhang R; Nakajima H; Soh N; Nakano K; Masadome T; Nagata K; Sakamoto K; Imato T Anal Chim Acta; 2007 Sep; 600(1-2):105-13. PubMed ID: 17903471 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Tang D; Yuan R; Chai Y Anal Chem; 2008 Mar; 80(5):1582-8. PubMed ID: 18220412 [TBL] [Abstract][Full Text] [Related]
16. One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone. Shim WB; Dzantiev BB; Eremin SA; Chung DH J Microbiol Biotechnol; 2009 Jan; 19(1):83-92. PubMed ID: 19190413 [TBL] [Abstract][Full Text] [Related]
17. [Studies on the chemical analysis of mycotoxin (XIV). Analytical results on zearalenone in baby foods]. Isohata E; Toyoda M; Saito Y Eisei Shikenjo Hokoku; 1986; (104):142-4. PubMed ID: 2952211 [No Abstract] [Full Text] [Related]
18. An electrochemical immunosensor for aflatoxin M1 determination in milk using screen-printed electrodes. Micheli L; Grecco R; Badea M; Moscone D; Palleschi G Biosens Bioelectron; 2005 Oct; 21(4):588-96. PubMed ID: 16202872 [TBL] [Abstract][Full Text] [Related]
19. A fluorescence polarization immunoassay for the detection of zearalenone in corn. Chun HS; Choi EH; Chang HJ; Choi SW; Eremin SA Anal Chim Acta; 2009 Apr; 639(1-2):83-9. PubMed ID: 19345763 [TBL] [Abstract][Full Text] [Related]
20. Highly sensitive detection of zearalenone in feed samples using competitive surface-enhanced Raman scattering immunoassay. Liu J; Hu Y; Zhu G; Zhou X; Jia L; Zhang T J Agric Food Chem; 2014 Aug; 62(33):8325-32. PubMed ID: 25052032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]