These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 19808115)
1. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Fan Y; Long YF; Li YF Anal Chim Acta; 2009 Oct; 653(2):207-11. PubMed ID: 19808115 [TBL] [Abstract][Full Text] [Related]
2. Trace mercury ion determination based on the highly selective redox reaction between stannous ion and mercury ion enhanced by gold nanoparticles. Zhang P; Chen S; Kang Y; Long Y Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():347-52. PubMed ID: 23022615 [TBL] [Abstract][Full Text] [Related]
3. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Liu CW; Huang CC; Chang HT Langmuir; 2008 Aug; 24(15):8346-50. PubMed ID: 18582003 [TBL] [Abstract][Full Text] [Related]
4. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296 [TBL] [Abstract][Full Text] [Related]
5. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions. Wang L; Li T; Du Y; Chen C; Li B; Zhou M; Dong S Biosens Bioelectron; 2010 Aug; 25(12):2622-6. PubMed ID: 20547052 [TBL] [Abstract][Full Text] [Related]
6. Resonance scattering spectral detection of trace Hg2+ using aptamer-modified nanogold as probe and nanocatalyst. Jiang Z; Fan Y; Chen M; Liang A; Liao X; Wen G; Shen X; He X; Pan H; Jiang H Anal Chem; 2009 Jul; 81(13):5439-45. PubMed ID: 19507871 [TBL] [Abstract][Full Text] [Related]
7. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Zhang JQ; Wang YS; He Y; Jiang T; Yang HM; Tan X; Kang RH; Yuan YK; Shi LF Anal Biochem; 2010 Feb; 397(2):212-7. PubMed ID: 19849997 [TBL] [Abstract][Full Text] [Related]
8. Gold nanoparticles generated through "green route" bind Hg2+ with a concomitant blue shift in plasmon absorption peak. Radhakumary C; Sreenivasan K Analyst; 2011 Jul; 136(14):2959-62. PubMed ID: 21655606 [TBL] [Abstract][Full Text] [Related]
9. A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@HgS core-shell structures. Zhang F; Zeng L; Yang C; Xin J; Wang H; Wu A Analyst; 2011 Jul; 136(13):2825-30. PubMed ID: 21611650 [TBL] [Abstract][Full Text] [Related]
10. Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance. Sheng Z; Han J; Zhang J; Zhao H; Jiang L Colloids Surf B Biointerfaces; 2011 Oct; 87(2):289-92. PubMed ID: 21700432 [TBL] [Abstract][Full Text] [Related]
11. Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. Kim YR; Mahajan RK; Kim JS; Kim H ACS Appl Mater Interfaces; 2010 Jan; 2(1):292-5. PubMed ID: 20356248 [TBL] [Abstract][Full Text] [Related]
12. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Chai F; Wang C; Wang T; Ma Z; Su Z Nanotechnology; 2010 Jan; 21(2):025501. PubMed ID: 19955605 [TBL] [Abstract][Full Text] [Related]
13. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Huang CZ; Liao QG; Gan LH; Guo FL; Li YF Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric assay for mercury (II) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles. Wu J; Li L; Zhu D; He P; Fang Y; Cheng G Anal Chim Acta; 2011 May; 694(1-2):115-9. PubMed ID: 21565311 [TBL] [Abstract][Full Text] [Related]
15. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Li ZP; Duan XR; Liu CH; Du BA Anal Biochem; 2006 Apr; 351(1):18-25. PubMed ID: 16500604 [TBL] [Abstract][Full Text] [Related]
16. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Schmidt B; Loeschner K; Hadrup N; Mortensen A; Sloth JJ; Koch CB; Larsen EH Anal Chem; 2011 Apr; 83(7):2461-8. PubMed ID: 21355549 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Lin YW; Huang CC; Chang HT Analyst; 2011 Mar; 136(5):863-71. PubMed ID: 21157604 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric detection of Hg²+ ions in aqueous media using CA-Au NPs. Liu Z; Hu J; Tong S; Cao Q; Yuan H Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():737-40. PubMed ID: 22892371 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solutions. Zhao W; Lin L; Hsing IM Langmuir; 2010 May; 26(10):7405-9. PubMed ID: 20180584 [TBL] [Abstract][Full Text] [Related]
20. A sensitive localized surface plasmon resonance sensor for determining mercury(II) ion using noble metal nanoparticles as probe. Bi N; Chen Y; Qi H; Zheng X; Chen Y; Liao X; Zhang H; Tian Y Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():276-81. PubMed ID: 22647401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]