These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1980833)

  • 1. Transmitter release: prepackaging and random mechanism or dynamic and deterministic process.
    Kriebel ME; Vautrin J; Holsapple J
    Brain Res Brain Res Rev; 1990; 15(2):167-78. PubMed ID: 1980833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further evidence for the dynamic formation of transmitter quanta at the neuromuscular junction.
    Vautrin J; Kriebel ME; Holsapple J
    J Neurosci Res; 1992 Jun; 32(2):245-54. PubMed ID: 1357188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of calcium on the dynamic process of transmitter release which generates either skew- or bell-MEPPS.
    Marcus DS; Kriebel ME; Hanna RB
    Brain Res; 1992 Oct; 593(2):185-96. PubMed ID: 1450927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in MEPP and EPP amplitude distributions in the mouse diaphragm during synapse formation and degeneration.
    Muniak CG; Kriebel ME; Carlson CG
    Brain Res; 1982 Oct; 281(2):123-38. PubMed ID: 7139344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of temperature on the amplitude distributions of miniature endplate potentials in the mouse diaphragm.
    Carlson CG; Kriebel ME; Muniak CG
    Neuroscience; 1982 Oct; 7(10):2537-49. PubMed ID: 7177386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic responses of presynaptic terminal membrane pools following KCl and sucrose stimulation.
    Fox GQ; Kriebel ME
    Brain Res; 1997 Apr; 755(1):47-62. PubMed ID: 9163540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmitter quantal size in Torpedo electrocytes is determined by frequency of release.
    Kriebel ME; Fox GQ; Keller B
    Brain Res; 1999 Oct; 845(2):185-91. PubMed ID: 10536197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of single quantal efficacy at the snake neuromuscular junction.
    Wilkinson RS; Lunin SD; Stevermer JJ
    J Physiol; 1992 Mar; 448():413-36. PubMed ID: 1350638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of black widow spider venom and Ca2+ on quantal secretion at the frog neuromuscular junction.
    Fesce R; Segal JR; Ceccarelli B; Hurlbut WP
    J Gen Physiol; 1986 Jul; 88(1):59-81. PubMed ID: 3488369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantal transmitter release mediated by strontium at the mouse motor nerve terminal.
    Bain AI; Quastel DM
    J Physiol; 1992 May; 450():63-87. PubMed ID: 1359125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic vesicle diameters and synaptic cleft widths at the mouse diaphragm in neonates and adults.
    Kriebel ME; Hanna R; Muniak C
    Brain Res; 1986 Jun; 392(1-2):19-29. PubMed ID: 3708376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.
    Girod R; Corrèges P; Jacquet J; Dunant Y
    J Physiol; 1993 Nov; 471():129-57. PubMed ID: 8120801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniature endplate potentials as a tool in neurotoxicology.
    Csicsaky M; Wiegand H; Uhlig S; Lohmann H; Papadopoulos R
    Toxicology; 1988 Apr; 49(1):121-9. PubMed ID: 2836968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A statistical model supports the subunit hypothesis of quantal relsease.
    Matteson DR; Kreibel ME; Llados F
    Neurosci Lett; 1979 Dec; 15(2-3):147-52. PubMed ID: 43495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Distribution and functioning of mediator release sites in the neuromuscular junction of the frog].
    Zefirov AL
    Neirofiziologiia; 1985; 17(2):152-60. PubMed ID: 2860572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid.
    Kijima H; Tanabe N
    J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal dimensions in the occurrence of miniature end-plate potential in a vertebrate neuromuscular junction.
    Takeda T; Sakata A; Matsuoka T
    Prog Neuropsychopharmacol Biol Psychiatry; 1999 Aug; 23(6):1157-69. PubMed ID: 10621955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lanthanum ions on the amplitude distributions of miniature endplate potentials and on synaptic vesicles in frog neuromuscular junctions.
    Kriebel ME; Florey E
    Neuroscience; 1983 Jul; 9(3):535-47. PubMed ID: 6312368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.