These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19808636)

  • 1. Discovery properties of genome-wide association signals from cumulatively combined data sets.
    Pereira TV; Patsopoulos NA; Salanti G; Ioannidis JP
    Am J Epidemiol; 2009 Nov; 170(10):1197-206. PubMed ID: 19808636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-analysis of genetic association studies: methodologies, between-study heterogeneity and winner's curse.
    Nakaoka H; Inoue I
    J Hum Genet; 2009 Nov; 54(11):615-23. PubMed ID: 19851339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the power of genome-wide association studies by using publicly available reference samples to expand the control group.
    Zhuang JJ; Zondervan K; Nyberg F; Harbron C; Jawaid A; Cardon LR; Barratt BJ; Morris AP
    Genet Epidemiol; 2010 May; 34(4):319-26. PubMed ID: 20088020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upward bias in odds ratio estimates from genome-wide association studies.
    Garner C
    Genet Epidemiol; 2007 May; 31(4):288-95. PubMed ID: 17266119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The power of meta-analysis in genome-wide association studies.
    Panagiotou OA; Willer CJ; Hirschhorn JN; Ioannidis JP
    Annu Rev Genomics Hum Genet; 2013; 14():441-65. PubMed ID: 23724904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies.
    Yoo YJ; Bull SB; Paterson AD; Waggott D; Sun L;
    Genet Epidemiol; 2010 Feb; 34(2):107-18. PubMed ID: 19626703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-replication of association for six polymorphisms from meta-analysis of genome-wide association studies of Parkinson's disease: large-scale collaborative study.
    Evangelou E; Maraganore DM; Annesi G; Brighina L; Brice A; Elbaz A; Ferrarese C; Hadjigeorgiou GM; Krueger R; Lambert JC; Lesage S; Markopoulou K; Mellick GD; Meeus B; Pedersen NL; Quattrone A; Van Broeckhoven C; Sharma M; Silburn PA; Tan EK; Wirdefeldt K; Ioannidis JP;
    Am J Med Genet B Neuropsychiatr Genet; 2010 Jan; 153B(1):220-8. PubMed ID: 19475631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for genetic model specification in the screening of genome-wide meta-analysis signals for further replication.
    Pereira TV; Patsopoulos NA; Pereira AC; Krieger JE
    Int J Epidemiol; 2011 Apr; 40(2):457-69. PubMed ID: 21149279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-Analysis of Common and Rare Variants.
    Michailidou K
    Methods Mol Biol; 2018; 1793():73-88. PubMed ID: 29876892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On individual genome-wide association studies and their meta-analysis.
    Pei YF; Zhang L; Papasian CJ; Wang YP; Deng HW
    Hum Genet; 2014 Mar; 133(3):265-79. PubMed ID: 24114349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity in meta-analyses of genome-wide association investigations.
    Ioannidis JP; Patsopoulos NA; Evangelou E
    PLoS One; 2007 Sep; 2(9):e841. PubMed ID: 17786212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of statistical approaches to rare variant analysis in genetic association studies.
    Morris AP; Zeggini E
    Genet Epidemiol; 2010 Feb; 34(2):188-93. PubMed ID: 19810025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified forward multiple regression in high-density genome-wide association studies for complex traits.
    Gu X; Frankowski RF; Rosner GL; Relling M; Peng B; Amos CI
    Genet Epidemiol; 2009 Sep; 33(6):518-25. PubMed ID: 19365845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies.
    Sun L; Craiu RV; Paterson AD; Bull SB
    Genet Epidemiol; 2006 Sep; 30(6):519-30. PubMed ID: 16800000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dealing with heterogeneity between cohorts in genomewide SNP association studies.
    Lebrec JJ; Stijnen T; van Houwelingen HC
    Stat Appl Genet Mol Biol; 2010; 9():Article 8. PubMed ID: 20196758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of rare variants via sequencing: implications for the design of complex trait association studies.
    Li B; Leal SM
    PLoS Genet; 2009 May; 5(5):e1000481. PubMed ID: 19436704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies.
    Zhong H; Prentice RL
    Biostatistics; 2008 Oct; 9(4):621-34. PubMed ID: 18310059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analysis in genome-wide association studies.
    Zeggini E; Ioannidis JP
    Pharmacogenomics; 2009 Feb; 10(2):191-201. PubMed ID: 19207020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of power of statistical methods for gene-environment interaction analyses.
    Ege MJ; Strachan DP
    Eur J Epidemiol; 2013 Oct; 28(10):785-97. PubMed ID: 24005774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
    Fan R; Chiu CY; Jung J; Weeks DE; Wilson AF; Bailey-Wilson JE; Amos CI; Chen Z; Mills JL; Xiong M
    Genet Epidemiol; 2016 Dec; 40(8):702-721. PubMed ID: 27374056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.