BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19808735)

  • 1. Determination of reliable CO2 emission factors for waste-to-energy plants.
    Obermoser M; Fellner J; Rechberger H
    Waste Manag Res; 2009 Nov; 27(9):907-13. PubMed ID: 19808735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.
    Ragossnig AM; Wartha C; Pomberger R
    Waste Manag Res; 2009 Nov; 27(9):914-21. PubMed ID: 19748941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.
    Schwarzböck T; Rechberger H; Cencic O; Fellner J
    Waste Manag; 2016 Mar; 49():263-271. PubMed ID: 26847720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for determining the biomass content of waste.
    Staber W; Flamme S; Feltner J
    Waste Manag Res; 2008 Feb; 26(1):78-87. PubMed ID: 18338704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content.
    Scheutz C; Fredenslund AM; Nedenskov J; Samuelsson J; Kjeldsen P
    Waste Manag; 2011 May; 31(5):946-55. PubMed ID: 21186118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.
    Fellner J; Cencic O; Zellinger G; Rechberger H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):3-12. PubMed ID: 21382872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global warming factor of municipal solid waste management in Europe.
    Gentil E; Clavreul J; Christensen TH
    Waste Manag Res; 2009 Nov; 27(9):850-60. PubMed ID: 19808730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact.
    Papageorgiou A; Karagiannidis A; Barton JR; Kalogirou E
    Waste Manag Res; 2009 Nov; 27(9):928-37. PubMed ID: 19837710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO₂ emission factors for waste incineration: Influence from source separation of recyclable materials.
    Larsen AW; Astrup T
    Waste Manag; 2011 Jul; 31(7):1597-605. PubMed ID: 21450451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global warming factors modelled for 40 generic municipal waste management scenarios.
    Christensen TH; Simion F; Tonini D; Møller J
    Waste Manag Res; 2009 Nov; 27(9):871-84. PubMed ID: 19837711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hazardous waste incineration in context with carbon dioxide.
    Reinhardt T; Richers U; Suchomel H
    Waste Manag Res; 2008 Feb; 26(1):88-95. PubMed ID: 18338705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil.
    Maciel FJ; Jucá JF
    Waste Manag; 2011 May; 31(5):966-77. PubMed ID: 21349694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aalborg, Denmark: a role model for waste management practices to mitigate greenhouse gas emissions.
    Hansen JA
    Waste Manag Res; 2009 Nov; 27(9):837-8. PubMed ID: 19940023
    [No Abstract]   [Full Text] [Related]  

  • 15. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.
    Yi S; Yoo KY; Hanaki K
    Waste Manag; 2011 Mar; 31(3):595-602. PubMed ID: 20933381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparision of two different ways of landfill gas utilization through greenhouse gas emission reductions analysis and financial analysis.
    Han H; Qian G; Long J; Li S
    Waste Manag Res; 2009 Nov; 27(9):922-7. PubMed ID: 19767323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of biogenic and fossil CO(2) emitted by waste incineration based on (14)CO(2) and mass balances.
    Mohn J; Szidat S; Fellner J; Rechberger H; Quartier R; Buchmann B; Emmenegger L
    Bioresour Technol; 2008 Sep; 99(14):6471-9. PubMed ID: 18164616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landfilling of waste: accounting of greenhouse gases and global warming contributions.
    Manfredi S; Tonini D; Christensen TH; Scharff H
    Waste Manag Res; 2009 Nov; 27(8):825-36. PubMed ID: 19808732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data.
    Poulsen TG; Hansen JA
    Waste Manag Res; 2009 Nov; 27(9):861-70. PubMed ID: 19767326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.