These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19809807)
1. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Lüke I; Handford JI; Palmer T; Sargent F Arch Microbiol; 2009 Dec; 191(12):919-25. PubMed ID: 19809807 [TBL] [Abstract][Full Text] [Related]
2. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Hatzixanthis K; Palmer T; Sargent F Mol Microbiol; 2003 Sep; 49(5):1377-90. PubMed ID: 12940994 [TBL] [Abstract][Full Text] [Related]
3. The Stable Interaction Between Signal Peptidase LepB of Escherichia coli and Nuclease Bacteriocins Promotes Toxin Entry into the Cytoplasm. Mora L; Moncoq K; England P; Oberto J; de Zamaroczy M J Biol Chem; 2015 Dec; 290(52):30783-96. PubMed ID: 26499796 [TBL] [Abstract][Full Text] [Related]
4. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase. Huang Q; Palmer T mBio; 2017 Aug; 8(4):. PubMed ID: 28765221 [TBL] [Abstract][Full Text] [Related]
5. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding. Ulfig A; Freudl R J Biol Chem; 2018 May; 293(19):7281-7299. PubMed ID: 29593092 [TBL] [Abstract][Full Text] [Related]
6. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex. Ulfig A; Fröbel J; Lausberg F; Blümmel AS; Heide AK; Müller M; Freudl R J Biol Chem; 2017 Jun; 292(26):10865-10882. PubMed ID: 28515319 [TBL] [Abstract][Full Text] [Related]
7. Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide. Chanal A; Santini CL; Wu LF J Mol Biol; 2003 Mar; 327(3):563-70. PubMed ID: 12634052 [TBL] [Abstract][Full Text] [Related]
8. Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide. Grahl S; Maillard J; Spronk CA; Vuister GW; Sargent F Mol Microbiol; 2012 Mar; 83(6):1254-67. PubMed ID: 22329966 [TBL] [Abstract][Full Text] [Related]
9. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157 [TBL] [Abstract][Full Text] [Related]
10. Efficient function of signal peptidase 1 of Escherichia coli is partly determined by residues in the mature N-terminus of exported proteins. Musik JE; Zalucki YM; Day CJ; Jennings MP Biochim Biophys Acta Biomembr; 2019 May; 1861(5):1018-1022. PubMed ID: 30849301 [TBL] [Abstract][Full Text] [Related]
11. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. Gallego-Parrilla JJ; Severi E; Chandra G; Palmer T Microbiology (Reading); 2024 Feb; 170(2):. PubMed ID: 38363712 [TBL] [Abstract][Full Text] [Related]
12. Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. Ize B; Coulthurst SJ; Hatzixanthis K; Caldelari I; Buchanan G; Barclay EC; Richardson DJ; Palmer T; Sargent F Microbiology (Reading); 2009 Dec; 155(Pt 12):3992-4004. PubMed ID: 19778964 [TBL] [Abstract][Full Text] [Related]
13. Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. Lammertyn E; Van Mellaert L; Meyen E; Lebeau I; De Buck E; Anné J; Geukens N Microbiology (Reading); 2004 May; 150(Pt 5):1475-1483. PubMed ID: 15133109 [TBL] [Abstract][Full Text] [Related]
14. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Sargent F; Berks BC; Palmer T Arch Microbiol; 2002 Aug; 178(2):77-84. PubMed ID: 12115052 [TBL] [Abstract][Full Text] [Related]
15. Role of the Escherichia coli Tat pathway in outer membrane integrity. Ize B; Stanley NR; Buchanan G; Palmer T Mol Microbiol; 2003 Jun; 48(5):1183-93. PubMed ID: 12787348 [TBL] [Abstract][Full Text] [Related]
16. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. Widdick DA; Eijlander RT; van Dijl JM; Kuipers OP; Palmer T J Mol Biol; 2008 Jan; 375(3):595-603. PubMed ID: 18054046 [TBL] [Abstract][Full Text] [Related]
17. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. Stanley NR; Palmer T; Berks BC J Biol Chem; 2000 Apr; 275(16):11591-6. PubMed ID: 10766774 [TBL] [Abstract][Full Text] [Related]
18. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Buchanan G; Sargent F; Berks BC; Palmer T Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051 [TBL] [Abstract][Full Text] [Related]
19. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. Cristóbal S; de Gier JW; Nielsen H; von Heijne G EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811 [TBL] [Abstract][Full Text] [Related]
20. Expression of the Bacillus subtilis TasA signal peptide leads to cell death in Escherichia coli due to inefficient cleavage by LepB. Musik JE; Zalucki YM; Day CJ; Jennings MP Biochim Biophys Acta Biomembr; 2021 Dec; 1863(12):183768. PubMed ID: 34492253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]