These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1981024)

  • 1. The Glu 2- ... Arg 10+ side-chain interaction in the C-peptide helix of ribonuclease A.
    Fairman R; Shoemaker KR; York EJ; Stewart JM; Baldwin RL
    Biophys Chem; 1990 Aug; 37(1-3):107-19. PubMed ID: 1981024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.
    Marqusee S; Baldwin RL
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8898-902. PubMed ID: 3122208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the charged-group effect on the stability of the C-peptide helix.
    Shoemaker KR; Kim PS; Brems DN; Marqusee S; York EJ; Chaiken IM; Stewart JM; Baldwin RL
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2349-53. PubMed ID: 3857585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Side-chain interactions in the C-peptide helix: Phe 8 ... His 12+.
    Shoemaker KR; Fairman R; Schultz DA; Robertson AD; York EJ; Stewart JM; Baldwin RL
    Biopolymers; 1990 Jan; 29(1):1-11. PubMed ID: 2328280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH; Cruz PF; Arnaut LG; Brito RMM; Serpa C
    J Phys Chem B; 2018 Apr; 122(14):3790-3800. PubMed ID: 29558133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide.
    Scholtz JM; Qian H; Robbins VH; Baldwin RL
    Biochemistry; 1993 Sep; 32(37):9668-76. PubMed ID: 8373771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fundamental role of the Glu 2- ... Arg 10+ salt bridge in the folding of isolated ribonuclease A S-peptide.
    Rico M; Gallego E; Santoro J; Bermejo FJ; Nieto JL; Herranz J
    Biochem Biophys Res Commun; 1984 Sep; 123(2):757-63. PubMed ID: 6487311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position effect on apparent helical propensities in the C-peptide helix.
    Fairman R; Armstrong KM; Shoemaker KR; York EJ; Stewart JM; Baldwin RL
    J Mol Biol; 1991 Oct; 221(4):1395-401. PubMed ID: 1942058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings.
    Huyghues-Despointes BM; Scholtz JM; Baldwin RL
    Protein Sci; 1993 Jan; 2(1):80-5. PubMed ID: 8443591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glutamate side chain length on intrahelical glutamate-lysine ion pairing interactions.
    Cheng RP; Wang WR; Girinath P; Yang PA; Ahmad R; Li JH; Hart P; Kokona B; Fairman R; Kilpatrick C; Argiros A
    Biochemistry; 2012 Sep; 51(36):7157-72. PubMed ID: 22931137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticooperativity in a Glu-Lys-Glu salt bridge triplet in an isolated alpha-helical peptide.
    Iqbalsyah TM; Doig AJ
    Biochemistry; 2005 Aug; 44(31):10449-56. PubMed ID: 16060653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H NMR studies of the solution conformations of an analogue of the C-peptide of ribonuclease A.
    Osterhout JJ; Baldwin RL; York EJ; Stewart JM; Dyson HJ; Wright PE
    Biochemistry; 1989 Aug; 28(17):7059-64. PubMed ID: 2819049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Pept Sci; 1997; 3(3):209-23. PubMed ID: 9230486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A.
    Bierzynski A; Kim PS; Baldwin RL
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2470-4. PubMed ID: 6283528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the substitution Ala----Gly at each of five residue positions in the C-peptide helix.
    Strehlow KG; Baldwin RL
    Biochemistry; 1989 Mar; 28(5):2130-3. PubMed ID: 2719948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains.
    Marti DN; Jelesarov I; Bosshard HR
    Biochemistry; 2000 Oct; 39(42):12804-18. PubMed ID: 11041845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deprotonation of Glu9 destabilizes the alpha-helix in C-peptide of RNase A.
    Bierzyński A
    Int J Pept Protein Res; 1988 Oct; 32(4):256-61. PubMed ID: 2850278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.