BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19810460)

  • 1. Comparisons of treatment optimization directly incorporating random patient setup uncertainty with a margin-based approach.
    Moore JA; Gordon JJ; Anscher MS; Siebers JV
    Med Phys; 2009 Sep; 36(9):3880-90. PubMed ID: 19810460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coverage-based treatment planning to accommodate delineation uncertainties in prostate cancer treatment.
    Xu H; Gordon JJ; Siebers JV
    Med Phys; 2015 Sep; 42(9):5435-43. PubMed ID: 26328992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Gaussian uncertainty assumptions on probabilistic optimization in particle therapy.
    Wieser HP; Karger CP; Wahl N; Bangert M
    Phys Med Biol; 2020 Jul; 65(14):145007. PubMed ID: 32340012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical adequacy assessment of autocontours for prostate IMRT with meaningful endpoints.
    Nourzadeh H; Watkins WT; Ahmed M; Hui C; Schlesinger D; Siebers JV
    Med Phys; 2017 Apr; 44(4):1525-1537. PubMed ID: 28196288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of optimal PTV margin for patients receiving CBCT-guided prostate IMRT: comparative analysis based on CBCT dose calculation with four different margins.
    Gill SK; Reddy K; Campbell N; Chen C; Pearson D
    J Appl Clin Med Phys; 2015 Nov; 16(6):252–262. PubMed ID: 26699581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric Evaluation of Incorporating Patient Geometric Variations Into Adaptive Plan Optimization Through Probabilistic Treatment Planning in Head and Neck Cancers.
    Liu Q; Liang J; Zhou D; Krauss DJ; Chen PY; Yan D
    Int J Radiat Oncol Biol Phys; 2018 Jul; 101(4):985-997. PubMed ID: 29976511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust mixed electron-photon radiation therapy optimization.
    Renaud MA; Serban M; Seuntjens J
    Med Phys; 2019 Mar; 46(3):1384-1396. PubMed ID: 30628079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of OAR dose sparing and plan robustness of beam-specific PTV in lung cancer IMRT treatment.
    Chang Y; Xiao F; Quan H; Yang Z
    Radiat Oncol; 2020 Oct; 15(1):241. PubMed ID: 33069253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of setup and range uncertainties on TCP and NTCP following VMAT or IMPT of oropharyngeal cancer patients.
    Hamming-Vrieze O; Depauw N; Craft DL; Chan AW; Rasch CRN; Verheij M; Sonke JJ; Kooy HM
    Phys Med Biol; 2019 Apr; 64(9):095001. PubMed ID: 30921775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of robust optimization against geometric uncertainties in TomoHelical planning for prostate cancer.
    Yagihashi T; Inoue K; Nagata H; Yamanaka M; Yamano A; Suzuki S; Yamakabe W; Sato N; Omura M; Inoue T
    J Appl Clin Med Phys; 2023 Apr; 24(4):e13881. PubMed ID: 36576418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Optimization of SBRT Planning for Patients With Early Stage Non-Small Cell Lung Cancer.
    Shang H; Pu Y; Wang Y
    Technol Cancer Res Treat; 2020; 19():1533033820916505. PubMed ID: 32314663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases.
    Tran A; Zhang J; Woods K; Yu V; Nguyen D; Gustafson G; Rosen L; Sheng K
    Radiat Oncol; 2017 Jan; 12(1):10. PubMed ID: 28077128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Monte Carlo based robustness calculation and evaluation tool.
    Loebner HA; Volken W; Mueller S; Bertholet J; Mackeprang PH; Guyer G; Aebersold DM; Stampanoni MFM; Manser P; Fix MK
    Med Phys; 2022 Jul; 49(7):4780-4793. PubMed ID: 35451087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target miss using PTV-based IMRT compared to robust optimization via coverage probability concept in prostate cancer.
    Outaggarts Z; Wegener D; Berger B; Zips D; Paulsen F; Bleif M; Thorwarth D; Alber M; Dohm O; Müller AC
    Acta Oncol; 2020 Aug; 59(8):911-917. PubMed ID: 32436467
    [No Abstract]   [Full Text] [Related]  

  • 15. Superiority in Robustness of Multifield Optimization Over Single-Field Optimization for Pencil-Beam Proton Therapy for Oropharynx Carcinoma: An Enhanced Robustness Analysis.
    Stützer K; Lin A; Kirk M; Lin L
    Int J Radiat Oncol Biol Phys; 2017 Nov; 99(3):738-749. PubMed ID: 29280468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive radiotherapy and the dosimetric impact of inter- and intrafractional motion on the planning target volume for prostate cancer patients.
    Böckelmann F; Putz F; Kallis K; Lettmaier S; Fietkau R; Bert C
    Strahlenther Onkol; 2020 Jul; 196(7):647-656. PubMed ID: 32157345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric and radiobiological comparison of prostate VMAT plans optimized using the photon and progressive resolution algorithm.
    Chow JCL; Jiang R; Xu L
    Med Dosim; 2020 Spring; 45(1):14-18. PubMed ID: 31103251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy.
    Ödén J; Eriksson K; Toma-Dasu I
    Med Phys; 2017 Mar; 44(3):810-822. PubMed ID: 28107554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic target definition and planning in patients with prostate cancer.
    Ferjančič P; van der Heide UA; Ménard C; Jeraj R
    Phys Med Biol; 2021 Oct; 66(21):. PubMed ID: 34644696
    [No Abstract]   [Full Text] [Related]  

  • 20. Robust radiation therapy optimization using simulated treatment courses for handling deformable organ motion.
    Fredriksson A; Engwall E; Andersson B
    Phys Med Biol; 2021 Feb; 66(4):045010. PubMed ID: 33348330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.