These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19810684)

  • 1. Interplay between the transport of solutes across nanofiltration membranes and the thermal properties of the thin active layer.
    Saidani H; Ben Amar N; Palmeri J; Deratani A
    Langmuir; 2010 Feb; 26(4):2574-83. PubMed ID: 19810684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes.
    Ben Amar N; Saidani H; Deratani A; Palmeri J
    Langmuir; 2007 Mar; 23(6):2937-52. PubMed ID: 17305374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures.
    Tsuru T; Ogawa K; Kanezashi M; Yoshioka T
    Langmuir; 2010 Jul; 26(13):10897-905. PubMed ID: 20405860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: preparation, characterization, and performance evaluation.
    Gohil JM; Ray P
    J Colloid Interface Sci; 2009 Oct; 338(1):121-7. PubMed ID: 19608190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes.
    Szymczyk A; Labbez C; Fievet P; Vidonne A; Foissy A; Pagetti J
    Adv Colloid Interface Sci; 2003 Mar; 103(1):77-94. PubMed ID: 12689761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator.
    Nghiem LD; Vogel D; Khan S
    Water Res; 2008 Sep; 42(15):4049-58. PubMed ID: 18678386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes.
    Szymczyk A; Fatin-Rouge N; Fievet P
    J Colloid Interface Sci; 2007 May; 309(2):245-52. PubMed ID: 17321538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer.
    Bar C; Çağlar N; Uz M; Mallapragada SK; Altinkaya SA
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31367-31377. PubMed ID: 31424905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater.
    Benítez FJ; Acero JL; Leal AI; González M
    J Hazard Mater; 2009 Mar; 162(2-3):1438-45. PubMed ID: 18650003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the pressure-induced potential arising through composite membranes with selective surface layers.
    Szymczyk A; Sbaï M; Fievet P
    Langmuir; 2005 Mar; 21(5):1818-26. PubMed ID: 15723477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.