These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19811698)

  • 1. Ultrastructural observations reveal the presence of channels between cork cells.
    Teixeira RT; Pereira H
    Microsc Microanal; 2009 Dec; 15(6):539-44. PubMed ID: 19811698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suberized cell walls of cork from cork oak differ from other species.
    Teixeira RT; Pereira H
    Microsc Microanal; 2010 Oct; 16(5):569-75. PubMed ID: 20804640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy and development of the endodermis and phellem of Quercus suber L. roots.
    Machado A; Pereira H; Teixeira RT
    Microsc Microanal; 2013 Jun; 19(3):525-34. PubMed ID: 23551860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak.
    Lopes ST; Sobral D; Costa B; Perdiguero P; Chaves I; Costa A; Miguel CM
    Tree Physiol; 2020 Feb; 40(2):129-141. PubMed ID: 31860724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons.
    Aguado PL; Curt MD; Pereira H; Fernández J
    Tree Physiol; 2012 Mar; 32(3):313-25. PubMed ID: 22418688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cork cells in cork oak periderms undergo programmed cell death and proanthocyanidin deposition.
    Inácio V; Lobato C; Graça J; Morais-Cecílio L
    Tree Physiol; 2021 Sep; 41(9):1701-1713. PubMed ID: 33611604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal development of suberized barriers in cork oak taproots.
    Leal AR; Sapeta H; Beeckman T; Barros PM; Oliveira MM
    Tree Physiol; 2022 Jun; 42(6):1269-1285. PubMed ID: 34970982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative transcriptomic approach to understanding the formation of cork.
    Boher P; Soler M; Sánchez A; Hoede C; Noirot C; Paiva JAP; Serra O; Figueras M
    Plant Mol Biol; 2018 Jan; 96(1-2):103-118. PubMed ID: 29143299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation.
    Fernández-Piñán S; Boher P; Soler M; Figueras M; Serra O
    Sci Rep; 2021 Jun; 11(1):12053. PubMed ID: 34103550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cork Development: What Lies Within.
    Teixeira RT
    Plants (Basel); 2022 Oct; 11(20):. PubMed ID: 36297695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of foliar trichomes of the Chinese cork oak Quercus variabilis by electron microscopy and three-dimensional surface profiling.
    Kim KW; Cho DH; Kim PG
    Microsc Microanal; 2011 Jun; 17(3):461-8. PubMed ID: 21554831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation.
    Armendariz I; López de Heredia U; Soler M; Puigdemont A; Ruiz MM; Jové P; Soto Á; Serra O; Figueras M
    BMC Plant Biol; 2024 Jun; 24(1):488. PubMed ID: 38825683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.
    Lopes MH; Barros AS; Pascoal Neto C; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2001; 62(5):268-77. PubMed ID: 11745122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins associated with cork formation in Quercus suber L. stem tissues.
    Ricardo CP; Martins I; Francisco R; Sergeant K; Pinheiro C; Campos A; Renaut J; Fevereiro P
    J Proteomics; 2011 Aug; 74(8):1266-78. PubMed ID: 21320649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis.
    Costa ML; Sobral R; Ribeiro Costa MM; Amorim MI; Coimbra S
    Ann Bot; 2015 Jan; 115(1):81-92. PubMed ID: 25452249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quercus suber cork extract displays a tensor and smoothing effect on human skin: an in vivo study.
    Coquet C; Bauza E; Oberto G; Berghi A; Farnet AM; Ferré E; Peyronel D; Dal Farra C; Domloge N
    Drugs Exp Clin Res; 2005; 31(3):89-99. PubMed ID: 16033247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential DNA Methylation Patterns Are Related to Phellogen Origin and Quality of Quercus suber Cork.
    Inácio V; Barros PM; Costa A; Roussado C; Gonçalves E; Costa R; Graça J; Oliveira MM; Morais-Cecílio L
    PLoS One; 2017; 12(1):e0169018. PubMed ID: 28045988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting nuclear and cytoplasmic exchanges between phylogenetically distant oak species (Quercus suber L. and Q. ilex L.) in Southern France: inferring crosses and dynamics.
    Mir C; Jarne P; Sarda V; Bonin A; Lumaret R
    Plant Biol (Stuttg); 2009 Mar; 11(2):213-26. PubMed ID: 19228328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genomic approach to suberin biosynthesis and cork differentiation.
    Soler M; Serra O; Molinas M; Huguet G; Fluch S; Figueras M
    Plant Physiol; 2007 May; 144(1):419-31. PubMed ID: 17351057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance.
    Alvarez R; Alvarez JM; Humara JM; Revilla A; Ordás RJ
    Biotechnol Lett; 2009 Sep; 31(9):1477-83. PubMed ID: 19543858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.