These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Jeon O; Kang SW; Lim HW; Hyung Chung J; Kim BS Biomaterials; 2006 Mar; 27(8):1598-607. PubMed ID: 16146647 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Perets A; Baruch Y; Weisbuch F; Shoshany G; Neufeld G; Cohen S J Biomed Mater Res A; 2003 Jun; 65(4):489-97. PubMed ID: 12761840 [TBL] [Abstract][Full Text] [Related]
6. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Pike DB; Cai S; Pomraning KR; Firpo MA; Fisher RJ; Shu XZ; Prestwich GD; Peattie RA Biomaterials; 2006 Oct; 27(30):5242-51. PubMed ID: 16806456 [TBL] [Abstract][Full Text] [Related]
7. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Ho YC; Mi FL; Sung HW; Kuo PL Int J Pharm; 2009 Jul; 376(1-2):69-75. PubMed ID: 19450670 [TBL] [Abstract][Full Text] [Related]
8. Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. Yoon JJ; Chung HJ; Park TG J Biomed Mater Res A; 2007 Dec; 83(3):597-605. PubMed ID: 17503533 [TBL] [Abstract][Full Text] [Related]
9. A novel in vitro assay for human angiogenesis. Brown KJ; Maynes SF; Bezos A; Maguire DJ; Ford MD; Parish CR Lab Invest; 1996 Oct; 75(4):539-55. PubMed ID: 8874385 [TBL] [Abstract][Full Text] [Related]
10. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. Layman H; Li X; Nagar E; Vial X; Pham SM; Andreopoulos FM J Biomater Sci Polym Ed; 2012; 23(1-4):185-206. PubMed ID: 21192837 [TBL] [Abstract][Full Text] [Related]
11. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. Yoon JJ; Chung HJ; Lee HJ; Park TG J Biomed Mater Res A; 2006 Dec; 79(4):934-42. PubMed ID: 16941589 [TBL] [Abstract][Full Text] [Related]
12. Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering. de la Puente P; Ludeña D; Fernández A; Aranda JL; Varela G; Iglesias J J Biomed Mater Res A; 2011 Dec; 99(4):648-54. PubMed ID: 21954088 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Zhou M; Liu Z; Wei Z; Liu C; Qiao T; Ran F; Bai Y; Jiang X; Ding Y Artif Organs; 2009 Mar; 33(3):230-9. PubMed ID: 19245522 [TBL] [Abstract][Full Text] [Related]
14. Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2. Zisch AH; Zeisberger SM; Ehrbar M; Djonov V; Weber CC; Ziemiecki A; Pasquale EB; Hubbell JA Biomaterials; 2004 Jul; 25(16):3245-57. PubMed ID: 14980419 [TBL] [Abstract][Full Text] [Related]
15. Sustained release and activation of the growth factor basic fibroblast growth factor from loaded scaffolds in heart valve tissue engineering. Somers P; Narine K; De Somer F; de Vos F; V Nooten G Growth Factors; 2008 Oct; 26(5):293-9. PubMed ID: 18651289 [TBL] [Abstract][Full Text] [Related]
16. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Shen H; Hu X; Bei J; Wang S Biomaterials; 2008 May; 29(15):2388-99. PubMed ID: 18313747 [TBL] [Abstract][Full Text] [Related]
17. Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds. Moncion A; Lin M; O'Neill EG; Franceschi RT; Kripfgans OD; Putnam AJ; Fabiilli ML Biomaterials; 2017 Sep; 140():26-36. PubMed ID: 28624705 [TBL] [Abstract][Full Text] [Related]
18. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
19. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. Pankajakshan D; Krishnan V K; Krishnan LK J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433 [TBL] [Abstract][Full Text] [Related]
20. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]