BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 19811990)

  • 1. Benefits of minimum-variance beamforming in medical ultrasound imaging.
    Synnevag JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1868-79. PubMed ID: 19811990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive beamforming applied to medical ultrasound imaging.
    Synnevåg JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1606-13. PubMed ID: 17703664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beamspace adaptive beamforming for ultrasound imaging.
    Nilsen CI; Hafizovic I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2187-97. PubMed ID: 19942506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-complexity data-dependent beamformer.
    Synnevag JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):281-9. PubMed ID: 21342813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging.
    Asl BM; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1923-31. PubMed ID: 19811995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capon beamforming in medical ultrasound imaging with focused beams.
    Vignon F; Burcher MR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):619-28. PubMed ID: 18407851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A decimated minimum variance beamformer applied to ultrasound imaging.
    Sakhaei SM
    Ultrasonics; 2015 May; 59():119-27. PubMed ID: 25725814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive field-of-view imaging for efficient receive beamforming in medical ultrasound imaging systems.
    Agarwal A; Yoo YM; Schneider FK; Kim Y
    Ultrasonics; 2008 Sep; 48(5):384-93. PubMed ID: 18372001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method of improving overall resolution in ultrasonic array imaging using spatio-temporal deconvolution.
    Lingvall F
    Ultrasonics; 2004 Apr; 42(1-9):961-8. PubMed ID: 15047414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-line acquisition with minimum variance beamforming in medical ultrasound imaging.
    Rabinovich A; Friedman Z; Feuer A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2521-31. PubMed ID: 24297018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic transmit beam technique in an aberrating environment.
    Bjåstad T; Aase SA; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1340-51. PubMed ID: 19574145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of penetration of modified amplitude and phase estimation beamformer.
    Hasegawa H
    J Med Ultrason (2001); 2017 Jan; 44(1):3-11. PubMed ID: 27443916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast parametric beamformer for synthetic aperture imaging.
    Nikolov SI; Jensen JA; Tomov BG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1755-67. PubMed ID: 18986919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new synthetic aperture focusing method to suppress the diffraction of ultrasound.
    Chang J; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):327-37. PubMed ID: 21342818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound.
    Ziksari MS; Asl BM
    Ultrasonics; 2017 Mar; 75():71-79. PubMed ID: 27939788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix.
    Asl BM; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):660-7. PubMed ID: 22547277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging.
    Mohammadzadeh Asl B; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2381-90. PubMed ID: 21041127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.
    Wygant IO; Jamal NS; Lee HJ; Nikoozadeh A; Oralkan O; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2145-56. PubMed ID: 19942502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of high frame rate imaging with limited diffraction beams.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):84-97. PubMed ID: 18244161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.