BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19812214)

  • 1. Interaction of the HIV-1 frameshift signal with the ribosome.
    Mazauric MH; Seol Y; Yoshizawa S; Visscher K; Fourmy D
    Nucleic Acids Res; 2009 Dec; 37(22):7654-64. PubMed ID: 19812214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the human immunodeficiency virus frameshift signal in a bacterial cell-free system: influence of an interaction between the ribosome and a stem-loop structure downstream from the slippery site.
    Brunelle MN; Payant C; Lemay G; Brakier-Gingras L
    Nucleic Acids Res; 1999 Dec; 27(24):4783-91. PubMed ID: 10572179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the mechanical unfolding of RNA pseudoknots.
    Green L; Kim CH; Bustamante C; Tinoco I
    J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting.
    Yang L; Zhong Z; Tong C; Jia H; Liu Y; Chen G
    J Am Chem Soc; 2018 Jul; 140(26):8172-8184. PubMed ID: 29884019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of the frameshift stimulatory structure in HIV-1.
    Ritchie DB; Cappellano TR; Tittle C; Rezajooei N; Rouleau L; Sikkema WKA; Woodside MT
    RNA; 2017 Sep; 23(9):1376-1384. PubMed ID: 28522581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift.
    Léger M; Dulude D; Steinberg SV; Brakier-Gingras L
    Nucleic Acids Res; 2007; 35(16):5581-92. PubMed ID: 17704133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop.
    Marcheschi RJ; Staple DW; Butcher SE
    J Mol Biol; 2007 Oct; 373(3):652-63. PubMed ID: 17868691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding.
    Bao C; Loerch S; Ling C; Korostelev AA; Grigorieff N; Ermolenko DN
    Elife; 2020 May; 9():. PubMed ID: 32427100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frameshifting RNA pseudoknots: structure and mechanism.
    Giedroc DP; Cornish PV
    Virus Res; 2009 Feb; 139(2):193-208. PubMed ID: 18621088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1.
    Léger M; Sidani S; Brakier-Gingras L
    RNA; 2004 Aug; 10(8):1225-35. PubMed ID: 15247429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.
    Zhong Z; Yang L; Zhang H; Shi J; Vandana JJ; Lam DT; Olsthoorn RC; Lu L; Chen G
    Sci Rep; 2016 Dec; 6():39549. PubMed ID: 28000744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.