These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19812214)

  • 1. Interaction of the HIV-1 frameshift signal with the ribosome.
    Mazauric MH; Seol Y; Yoshizawa S; Visscher K; Fourmy D
    Nucleic Acids Res; 2009 Dec; 37(22):7654-64. PubMed ID: 19812214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the human immunodeficiency virus frameshift signal in a bacterial cell-free system: influence of an interaction between the ribosome and a stem-loop structure downstream from the slippery site.
    Brunelle MN; Payant C; Lemay G; Brakier-Gingras L
    Nucleic Acids Res; 1999 Dec; 27(24):4783-91. PubMed ID: 10572179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the mechanical unfolding of RNA pseudoknots.
    Green L; Kim CH; Bustamante C; Tinoco I
    J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting.
    Yang L; Zhong Z; Tong C; Jia H; Liu Y; Chen G
    J Am Chem Soc; 2018 Jul; 140(26):8172-8184. PubMed ID: 29884019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of the frameshift stimulatory structure in HIV-1.
    Ritchie DB; Cappellano TR; Tittle C; Rezajooei N; Rouleau L; Sikkema WKA; Woodside MT
    RNA; 2017 Sep; 23(9):1376-1384. PubMed ID: 28522581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift.
    Léger M; Dulude D; Steinberg SV; Brakier-Gingras L
    Nucleic Acids Res; 2007; 35(16):5581-92. PubMed ID: 17704133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop.
    Marcheschi RJ; Staple DW; Butcher SE
    J Mol Biol; 2007 Oct; 373(3):652-63. PubMed ID: 17868691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding.
    Bao C; Loerch S; Ling C; Korostelev AA; Grigorieff N; Ermolenko DN
    Elife; 2020 May; 9():. PubMed ID: 32427100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frameshifting RNA pseudoknots: structure and mechanism.
    Giedroc DP; Cornish PV
    Virus Res; 2009 Feb; 139(2):193-208. PubMed ID: 18621088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1.
    Léger M; Sidani S; Brakier-Gingras L
    RNA; 2004 Aug; 10(8):1225-35. PubMed ID: 15247429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.
    Zhong Z; Yang L; Zhang H; Shi J; Vandana JJ; Lam DT; Olsthoorn RC; Lu L; Chen G
    Sci Rep; 2016 Dec; 6():39549. PubMed ID: 28000744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal.
    Bidou L; Stahl G; Grima B; Liu H; Cassan M; Rousset JP
    RNA; 1997 Oct; 3(10):1153-8. PubMed ID: 9326490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.