These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19812243)

  • 1. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine.
    Verhagen BW; Trotel-Aziz P; Couderchet M; Höfte M; Aziz A
    J Exp Bot; 2010; 61(1):249-60. PubMed ID: 19812243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production.
    Verhagen B; Trotel-Aziz P; Jeandet P; Baillieul F; Aziz A
    Phytopathology; 2011 Jul; 101(7):768-77. PubMed ID: 21425931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine.
    Gruau C; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1117-29. PubMed ID: 26075828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin.
    Audenaert K; Pattery T; Cornelis P; Höfte M
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1147-56. PubMed ID: 12423020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.
    Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A
    J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1.
    Akram A; Ongena M; Duby F; Dommes J; Thonart P
    BMC Plant Biol; 2008 Nov; 8():113. PubMed ID: 19000301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.
    Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A
    J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea.
    De Bona GS; Adrian M; Negrel J; Chiltz A; Klinguer A; Poinssot B; Héloir MC; Angelini E; Vincenzi S; Bertazzon N
    J Agric Food Chem; 2019 May; 67(19):5512-5520. PubMed ID: 31008600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance.
    van Loon LC; Bakker PA; van der Heijdt WH; Wendehenne D; Pugin A
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1609-21. PubMed ID: 18986257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea.
    Aziz A; Heyraud A; Lambert B
    Planta; 2004 Mar; 218(5):767-74. PubMed ID: 14618326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions.
    Bordiec S; Paquis S; Lacroix H; Dhondt S; Ait Barka E; Kauffmann S; Jeandet P; Mazeyrat-Gourbeyre F; Clément C; Baillieul F; Dorey S
    J Exp Bot; 2011 Jan; 62(2):595-603. PubMed ID: 20881012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures.
    Bru R; Sellés S; Casado-Vela J; Belchí-Navarro S; Pedreño MA
    J Agric Food Chem; 2006 Jan; 54(1):65-71. PubMed ID: 16390179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola.
    Aziz A; Poinssot B; Daire X; Adrian M; Bézier A; Lambert B; Joubert JM; Pugin A
    Mol Plant Microbe Interact; 2003 Dec; 16(12):1118-28. PubMed ID: 14651345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria.
    Trdá L; Fernandez O; Boutrot F; Héloir MC; Kelloniemi J; Daire X; Adrian M; Clément C; Zipfel C; Dorey S; Poinssot B
    New Phytol; 2014 Mar; 201(4):1371-1384. PubMed ID: 24491115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens.
    Weller DM; Mavrodi DV; van Pelt JA; Pieterse CM; van Loon LC; Bakker PA
    Phytopathology; 2012 Apr; 102(4):403-12. PubMed ID: 22409433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salicylic Acid Produced by the Rhizobacterium Pseudomonas aeruginosa 7NSK2 Induces Resistance to Leaf Infection by Botrytis cinerea on Bean.
    De Meyer G; Höfte M
    Phytopathology; 1997 Jun; 87(6):588-93. PubMed ID: 18945074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species.
    Salomon MV; Purpora R; Bottini R; Piccoli P
    Plant Physiol Biochem; 2016 Sep; 106():295-304. PubMed ID: 27231874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin.
    Zheng C; Choquer M; Zhang B; Ge H; Hu S; Ma H; Chen S
    Fungal Biol; 2011 Sep; 115(9):815-32. PubMed ID: 21872179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling and Localization of Stilbene Phytoalexins Revealed by MALDI-MSI during the Grapevine-
    Maia M; Aziz A; Jeandet P; Carré V
    J Agric Food Chem; 2023 Oct; 71(42):15569-15581. PubMed ID: 37831964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.