These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 19812295)

  • 1. Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex.
    Victor JD; Mechler F; Ohiorhenuan I; Schmid AM; Purpura KP
    J Neurophysiol; 2009 Dec; 102(6):3414-32. PubMed ID: 19812295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of V1 neurons to two-dimensional hermite functions.
    Victor JD; Mechler F; Repucci MA; Purpura KP; Sharpee T
    J Neurophysiol; 2006 Jan; 95(1):379-400. PubMed ID: 16148274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of V1 surround suppression in MT motion integration.
    Tsui JM; Hunter JN; Born RT; Pack CC
    J Neurophysiol; 2010 Jun; 103(6):3123-38. PubMed ID: 20457860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal elements of macaque v1 receptive fields.
    Rust NC; Schwartz O; Movshon JA; Simoncelli EP
    Neuron; 2005 Jun; 46(6):945-56. PubMed ID: 15953422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.
    Gharat A; Baker CL
    J Neurosci; 2017 Jan; 37(4):998-1013. PubMed ID: 28123031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys.
    Tao X; Zhang B; Smith EL; Nishimoto S; Ohzawa I; Chino YM
    J Neurophysiol; 2012 Feb; 107(4):1094-110. PubMed ID: 22114163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear V1 responses to natural scenes revealed by neural network analysis.
    Prenger R; Wu MC; David SV; Gallant JL
    Neural Netw; 2004; 17(5-6):663-79. PubMed ID: 15288891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual orientation and directional selectivity through thalamic synchrony.
    Stanley GB; Jin J; Wang Y; Desbordes G; Wang Q; Black MJ; Alonso JM
    J Neurosci; 2012 Jun; 32(26):9073-88. PubMed ID: 22745507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies.
    Nishimoto S; Gallant JL
    J Neurosci; 2011 Oct; 31(41):14551-64. PubMed ID: 21994372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the extraclassical receptive field in macaque V1: contrast, orientation, and temporal dynamics.
    Henry CA; Joshi S; Xing D; Shapley RM; Hawken MJ
    J Neurosci; 2013 Apr; 33(14):6230-42. PubMed ID: 23554504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective receptive fields in mouse visual cortex.
    Niell CM; Stryker MP
    J Neurosci; 2008 Jul; 28(30):7520-36. PubMed ID: 18650330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic Correlates of Low-Level Perception in V1.
    Gerard-Mercier F; Carelli PV; Pananceau M; Troncoso XG; Frégnac Y
    J Neurosci; 2016 Apr; 36(14):3925-42. PubMed ID: 27053201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptive fields and functional architecture of macaque V2.
    Levitt JB; Kiper DC; Movshon JA
    J Neurophysiol; 1994 Jun; 71(6):2517-42. PubMed ID: 7931532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of suppression in macaque primary visual cortex.
    Smith MA; Bair W; Movshon JA
    J Neurosci; 2006 May; 26(18):4826-34. PubMed ID: 16672656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Untuned suppression makes a major contribution to the enhancement of orientation selectivity in macaque v1.
    Xing D; Ringach DL; Hawken MJ; Shapley RM
    J Neurosci; 2011 Nov; 31(44):15972-82. PubMed ID: 22049440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex.
    Lampl I; Anderson JS; Gillespie DC; Ferster D
    Neuron; 2001 Apr; 30(1):263-74. PubMed ID: 11343660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation.
    Smyth D; Willmore B; Baker GE; Thompson ID; Tolhurst DJ
    J Neurosci; 2003 Jun; 23(11):4746-59. PubMed ID: 12805314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2547-56. PubMed ID: 12424293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.