These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 19812342)
1. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. Swann N; Tandon N; Canolty R; Ellmore TM; McEvoy LK; Dreyer S; DiSano M; Aron AR J Neurosci; 2009 Oct; 29(40):12675-85. PubMed ID: 19812342 [TBL] [Abstract][Full Text] [Related]
2. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. Swann NC; Cai W; Conner CR; Pieters TA; Claffey MP; George JS; Aron AR; Tandon N Neuroimage; 2012 Feb; 59(3):2860-70. PubMed ID: 21979383 [TBL] [Abstract][Full Text] [Related]
3. Paired-pulse TMS and scalp EEG reveal systematic relationship between inhibitory GABA Hynd M; Soh C; Rangel BO; Wessel JR J Neurophysiol; 2021 Feb; 125(2):648-660. PubMed ID: 33439759 [TBL] [Abstract][Full Text] [Related]
4. Establishing a Right Frontal Beta Signature for Stopping Action in Scalp EEG: Implications for Testing Inhibitory Control in Other Task Contexts. Wagner J; Wessel JR; Ghahremani A; Aron AR J Cogn Neurosci; 2018 Jan; 30(1):107-118. PubMed ID: 28880766 [TBL] [Abstract][Full Text] [Related]
6. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease. Swann N; Poizner H; Houser M; Gould S; Greenhouse I; Cai W; Strunk J; George J; Aron AR J Neurosci; 2011 Apr; 31(15):5721-9. PubMed ID: 21490213 [TBL] [Abstract][Full Text] [Related]
7. On the role of the striatum in response inhibition. Zandbelt BB; Vink M PLoS One; 2010 Nov; 5(11):e13848. PubMed ID: 21079814 [TBL] [Abstract][Full Text] [Related]
8. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. Duann JR; Ide JS; Luo X; Li CS J Neurosci; 2009 Aug; 29(32):10171-9. PubMed ID: 19675251 [TBL] [Abstract][Full Text] [Related]
9. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task. Watanabe T; Hanajima R; Shirota Y; Tsutsumi R; Shimizu T; Hayashi T; Terao Y; Ugawa Y; Katsura M; Kunimatsu A; Ohtomo K; Hirose S; Miyashita Y; Konishi S J Neurosci; 2015 Mar; 35(12):4813-23. PubMed ID: 25810512 [TBL] [Abstract][Full Text] [Related]
10. Reward improves response inhibition by enhancing attentional capture. Wang Y; Braver TS; Yin S; Hu X; Wang X; Chen A Soc Cogn Affect Neurosci; 2019 Jan; 14(1):35-45. PubMed ID: 30535116 [TBL] [Abstract][Full Text] [Related]
11. Temporally-precise disruption of prefrontal cortex informed by the timing of beta bursts impairs human action-stopping. Hannah R; Muralidharan V; Sundby KK; Aron AR Neuroimage; 2020 Nov; 222():117222. PubMed ID: 32768628 [TBL] [Abstract][Full Text] [Related]
12. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks. Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory motor control in response stopping and response switching. Kenner NM; Mumford JA; Hommer RE; Skup M; Leibenluft E; Poldrack RA J Neurosci; 2010 Jun; 30(25):8512-8. PubMed ID: 20573898 [TBL] [Abstract][Full Text] [Related]
14. Expectations and violations: delineating the neural network of proactive inhibitory control. Zandbelt BB; Bloemendaal M; Neggers SF; Kahn RS; Vink M Hum Brain Mapp; 2013 Sep; 34(9):2015-24. PubMed ID: 22359406 [TBL] [Abstract][Full Text] [Related]
15. Temporal cascade of frontal, motor and muscle processes underlying human action-stopping. Jana S; Hannah R; Muralidharan V; Aron AR Elife; 2020 Mar; 9():. PubMed ID: 32186515 [TBL] [Abstract][Full Text] [Related]
16. Sensorimotor-independent prefrontal activity during response inhibition. Cai W; Cannistraci CJ; Gore JC; Leung HC Hum Brain Mapp; 2014 May; 35(5):2119-36. PubMed ID: 23798325 [TBL] [Abstract][Full Text] [Related]
17. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions. Jahfari S; Verbruggen F; Frank MJ; Waldorp LJ; Colzato L; Ridderinkhof KR; Forstmann BU J Neurosci; 2012 Aug; 32(32):10870-8. PubMed ID: 22875921 [TBL] [Abstract][Full Text] [Related]
18. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. Jahfari S; Waldorp L; van den Wildenberg WP; Scholte HS; Ridderinkhof KR; Forstmann BU J Neurosci; 2011 May; 31(18):6891-9. PubMed ID: 21543619 [TBL] [Abstract][Full Text] [Related]
19. Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements. Mattia M; Spadacenta S; Pavone L; Quarato P; Esposito V; Sparano A; Sebastiano F; Di Gennaro G; Morace R; Cantore G; Mirabella G Front Neuroeng; 2012; 5():12. PubMed ID: 22754525 [TBL] [Abstract][Full Text] [Related]
20. Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement. Bartoli E; Aron AR; Tandon N Hum Brain Mapp; 2018 Jan; 39(1):189-203. PubMed ID: 29024235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]