These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19812410)

  • 21. [Immunological analysis by using animal models of multiple sclerosis--acute and chronic relapsing EAE].
    Tabira T
    Rinsho Shinkeigaku; 1984 Dec; 24(12):1229-31. PubMed ID: 6336039
    [No Abstract]   [Full Text] [Related]  

  • 22. Activation and control of pathogenic T cells in OSP/claudin-11-induced EAE in SJL/J mice are dominated by their focused recognition of a single epitopic residue (OSP58M).
    Kaushansky N; Eisenstein M; Oved JH; Ben-Nun A
    Int Immunol; 2008 Nov; 20(11):1439-49. PubMed ID: 18801757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. T lymphocyte autoimmunity in experimental autoimmune encephalomyelitis.
    Wekerle H; Fierz W
    Concepts Immunopathol; 1985; 2():102-27. PubMed ID: 2439202
    [No Abstract]   [Full Text] [Related]  

  • 24. Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis.
    Thessen Hedreul M; Gillett A; Olsson T; Jagodic M; Harris RA
    J Neuroimmunol; 2009 May; 210(1-2):30-9. PubMed ID: 19269041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significance of autoreactive T cells in diseases such as multiple sclerosis using an innovative primate model.
    McFarland HF
    J Clin Invest; 1994 Sep; 94(3):921-2. PubMed ID: 8083376
    [No Abstract]   [Full Text] [Related]  

  • 26. Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis.
    Linker RA; Lee DH; Demir S; Wiese S; Kruse N; Siglienti I; Gerhardt E; Neumann H; Sendtner M; Lühder F; Gold R
    Brain; 2010 Aug; 133(Pt 8):2248-63. PubMed ID: 20826430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T Cell-Transfer Experimental Autoimmune Encephalomyelitis: Pillar of Multiple Sclerosis and Autoimmunity.
    Hohlfeld R; Steinman L
    J Immunol; 2017 May; 198(9):3381-3383. PubMed ID: 28416715
    [No Abstract]   [Full Text] [Related]  

  • 28. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis.
    Massacesi L; Genain CP; Lee-Parritz D; Letvin NL; Canfield D; Hauser SL
    Ann Neurol; 1995 Apr; 37(4):519-30. PubMed ID: 7717689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The generation of the relapse in chronic relapsing experimental allergic encephalomyelitis and multiple sclerosis--parallels and differences.
    Suckling AJ; Kirby JA; Wilson NR; Rumsby MG
    Prog Clin Biol Res; 1984; 146():7-12. PubMed ID: 6609376
    [No Abstract]   [Full Text] [Related]  

  • 30. The recognition of self-antigens and autoimmune disease.
    Smith SC; Allen PM
    Curr Opin Immunol; 1991 Feb; 3(1):22-5. PubMed ID: 2054110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The trimolecular complex as a target for specific immunotherapy in experimental autoimmune encephalomyelitis--applications for multiple sclerosis and other human autoimmune disease].
    Miller A; Weiner HL; Abramsky O
    Harefuah; 1992 Aug; 123(3-4):110-5. PubMed ID: 1516860
    [No Abstract]   [Full Text] [Related]  

  • 32. Immunoregulation of autoimmunity by natural killer T cells.
    Linsen L; Somers V; Stinissen P
    Hum Immunol; 2005 Dec; 66(12):1193-202. PubMed ID: 16690406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis.
    Chitnis T; Khoury SJ
    J Allergy Clin Immunol; 2003 Nov; 112(5):837-49; quiz 850. PubMed ID: 14610467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation.
    Zozulya AL; Wiendl H
    Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anti-neuroglial and anti-neuronal cell factors in experimental allergic encephalomyelitis and multiple sclerosis.
    Bornstein MB
    Int Arch Allergy Appl Immunol; 1969; 36():Suppl:574-607. PubMed ID: 4906733
    [No Abstract]   [Full Text] [Related]  

  • 36. Conclusion: is myelin basic protein the right antigen and experimental allergic encephalomyelitis the right model for multiple sclerosis?
    Alvord EC
    Prog Clin Biol Res; 1984; 146():503-8. PubMed ID: 6201920
    [No Abstract]   [Full Text] [Related]  

  • 37. Initiation and regulation of CNS autoimmunity.
    Goverman J; Brabb T; Paez A; Harrington C; von Dassow P
    Crit Rev Immunol; 1997; 17(5-6):469-80. PubMed ID: 9419434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis.
    Voskuhl RR; Pitchekian-Halabi H; MacKenzie-Graham A; McFarland HF; Raine CS
    Ann Neurol; 1996 Jun; 39(6):724-33. PubMed ID: 8651644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Animal models for multiple sclerosis.
    Owens T
    Adv Neurol; 2006; 98():77-89. PubMed ID: 16400828
    [No Abstract]   [Full Text] [Related]  

  • 40. Human mast cells stimulate activated T cells: implications for multiple sclerosis.
    Theoharides TC; Kempuraj D; Kourelis T; Manola A
    Ann N Y Acad Sci; 2008 Nov; 1144():74-82. PubMed ID: 19076366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.