These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19812766)

  • 21. The use of functional domains to improve transmembrane protein topology prediction.
    Xu EW; Kearney P; Brown DG
    J Bioinform Comput Biol; 2006 Feb; 4(1):109-23. PubMed ID: 16568545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating the length of transmembrane helices using Z-coordinate predictions.
    Papaloukas C; Granseth E; Viklund H; Elofsson A
    Protein Sci; 2008 Feb; 17(2):271-8. PubMed ID: 18096645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2006 Apr; 7():189. PubMed ID: 16597327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [A novel segment-training algorithm for transmembrane helices prediction].
    Wang M; Li A; Wang X; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):444-8. PubMed ID: 17591278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The human transmembrane proteome.
    Dobson L; Reményi I; Tusnády GE
    Biol Direct; 2015 May; 10():31. PubMed ID: 26018427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins.
    Martelli PL; Fariselli P; Krogh A; Casadio R
    Bioinformatics; 2002; 18 Suppl 1():S46-53. PubMed ID: 12169530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling.
    Wu H; Wang K; Lu L; Xue Y; Lyu Q; Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1106-1114. PubMed ID: 27576262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An evolutionary method for learning HMM structure: prediction of protein secondary structure.
    Won KJ; Hamelryck T; Prügel-Bennett A; Krogh A
    BMC Bioinformatics; 2007 Sep; 8():357. PubMed ID: 17888163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server.
    Käll L; Krogh A; Sonnhammer EL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W429-32. PubMed ID: 17483518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins.
    Liu Q; Zhu YS; Wang BH; Li YX
    Comput Biol Chem; 2003 Feb; 27(1):69-76. PubMed ID: 12798041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving transmembrane protein consensus topology prediction using inter-helical interaction.
    Wang H; Zhang C; Shi X; Zhang L; Zhou Y
    Biochim Biophys Acta; 2012 Nov; 1818(11):2679-86. PubMed ID: 22683598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TMSEG: Novel prediction of transmembrane helices.
    Bernhofer M; Kloppmann E; Reeb J; Rost B
    Proteins; 2016 Nov; 84(11):1706-1716. PubMed ID: 27566436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
    Krogh A; Larsson B; von Heijne G; Sonnhammer EL
    J Mol Biol; 2001 Jan; 305(3):567-80. PubMed ID: 11152613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmembrane topology and signal peptide prediction using dynamic bayesian networks.
    Reynolds SM; Käll L; Riffle ME; Bilmes JA; Noble WS
    PLoS Comput Biol; 2008 Nov; 4(11):e1000213. PubMed ID: 18989393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmembrane helix prediction using amino acid property features and latent semantic analysis.
    Ganapathiraju M; Balakrishnan N; Reddy R; Klein-Seetharaman J
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S4. PubMed ID: 18315857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TMBHMM: a frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmembrane residues.
    Singh NK; Goodman A; Walter P; Helms V; Hayat S
    Biochim Biophys Acta; 2011 May; 1814(5):664-70. PubMed ID: 21426944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model.
    Zhang S; Cao C; Quinn A; Vivekananda U; Zhan S; Liu W; Sun B; Woolrich M; Lu Q; Litvak V
    Neuroimage; 2021 Jun; 233():117923. PubMed ID: 33662572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.