These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 19812901)
1. Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes. Jeon E; Hyeon JE; Suh DJ; Suh YW; Kim SW; Song KH; Han SO Mol Cells; 2009 Oct; 28(4):369-73. PubMed ID: 19812901 [TBL] [Abstract][Full Text] [Related]
2. Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase. Jeon E; Hyeon Je; Eun LS; Park BS; Kim SW; Lee J; Han SO FEMS Microbiol Lett; 2009 Nov; 301(1):130-6. PubMed ID: 19843308 [TBL] [Abstract][Full Text] [Related]
3. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. Tang H; Hou J; Shen Y; Xu L; Yang H; Fang X; Bao X J Microbiol Biotechnol; 2013 Nov; 23(11):1577-85. PubMed ID: 23928840 [TBL] [Abstract][Full Text] [Related]
4. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. Hyeon JE; Yu KO; Suh DJ; Suh YW; Lee SE; Lee J; Han SO FEMS Microbiol Lett; 2010 Sep; 310(1):39-47. PubMed ID: 20637040 [TBL] [Abstract][Full Text] [Related]
5. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Fujita Y; Ito J; Ueda M; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Feb; 70(2):1207-12. PubMed ID: 14766607 [TBL] [Abstract][Full Text] [Related]
6. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added. Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Den Haan R; Rose SH; Lynd LR; van Zyl WH Metab Eng; 2007 Jan; 9(1):87-94. PubMed ID: 17112757 [TBL] [Abstract][Full Text] [Related]
8. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain. Casa-Villegas M; Marín-Navarro J; Polaina J World J Microbiol Biotechnol; 2017 Jul; 33(7):140. PubMed ID: 28589508 [TBL] [Abstract][Full Text] [Related]
9. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. du Plessis L; Rose SH; van Zyl WH Appl Microbiol Biotechnol; 2010 May; 86(5):1503-11. PubMed ID: 20041241 [TBL] [Abstract][Full Text] [Related]
10. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Kim S; Baek SH; Lee K; Hahn JS Microb Cell Fact; 2013 Feb; 12():14. PubMed ID: 23383678 [TBL] [Abstract][Full Text] [Related]
11. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Baek SH; Kim S; Lee K; Lee JK; Hahn JS Enzyme Microb Technol; 2012 Dec; 51(6-7):366-72. PubMed ID: 23040393 [TBL] [Abstract][Full Text] [Related]
12. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1. Gong Y; Tang G; Wang M; Li J; Xiao W; Lin J; Liu Z J Gen Appl Microbiol; 2014; 60(5):198-206. PubMed ID: 25420425 [TBL] [Abstract][Full Text] [Related]
13. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. Lee WH; Jin YS J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous saccharification and fermentation of corncobs with genetically modified Saccharomyces cerevisiae and characterization of their microstructure during hydrolysis. Song HT; Liu SH; Gao Y; Yang YM; Xiao WJ; Xia WC; Liu ZL; Li R; Ma XD; Jiang ZB Bioengineered; 2016 Apr; 7(3):198-204. PubMed ID: 27116398 [TBL] [Abstract][Full Text] [Related]
15. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Huang R; Guo H; Su R; Qi W; He Z Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443 [TBL] [Abstract][Full Text] [Related]
16. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase. Kotaka A; Bando H; Kaya M; Kato-Murai M; Kuroda K; Sahara H; Hata Y; Kondo A; Ueda M J Biosci Bioeng; 2008 Jun; 105(6):622-7. PubMed ID: 18640601 [TBL] [Abstract][Full Text] [Related]
18. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. Lee WH; Nan H; Kim HJ; Jin YS J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155 [TBL] [Abstract][Full Text] [Related]
20. Effect of the cellulose-binding domain on the catalytic activity of a beta-glucosidase from Saccharomycopsis fibuligera. Gundllapalli SB; Pretorius IS; Cordero Otero RR J Ind Microbiol Biotechnol; 2007 Jun; 34(6):413-21. PubMed ID: 17333092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]