These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19812901)

  • 21. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.
    Lee CR; Sung BH; Lim KM; Kim MJ; Sohn MJ; Bae JH; Sohn JH
    Sci Rep; 2017 Jun; 7(1):4428. PubMed ID: 28667330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene.
    Ichikawa S; Ichihara M; Ito T; Isozaki K; Kosugi A; Karita S
    J Biosci Bioeng; 2019 Mar; 127(3):340-344. PubMed ID: 30237013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of bi-functional chimeric enzyme (CtGH1-L1-CtGH5-F194A) from endoglucanase (CtGH5) mutant F194A and β-1,4-glucosidase (CtGH1) from Clostridium thermocellum with enhanced activity and structural integrity.
    Nath P; Dhillon A; Kumar K; Sharma K; Jamaldheen SB; Moholkar VS; Goyal A
    Bioresour Technol; 2019 Jun; 282():494-501. PubMed ID: 30897487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity.
    Maki ML; Armstrong L; Leung KT; Qin W
    Bioengineered; 2013; 4(1):15-20. PubMed ID: 22922214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes.
    Fujita Y; Takahashi S; Ueda M; Tanaka A; Okada H; Morikawa Y; Kawaguchi T; Arai M; Fukuda H; Kondo A
    Appl Environ Microbiol; 2002 Oct; 68(10):5136-41. PubMed ID: 12324364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase.
    Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y
    Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8241-54. PubMed ID: 27470141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignocellulosic fermentation of wild grass employing recombinant hydrolytic enzymes and fermentative microbes with effective bioethanol recovery.
    Das SP; Ghosh A; Gupta A; Goyal A; Das D
    Biomed Res Int; 2013; 2013():386063. PubMed ID: 24089676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates.
    Ryu S; Karim MN
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):529-42. PubMed ID: 21519935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain.
    Matano Y; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2231-7. PubMed ID: 23184221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of combination of pretreatment of
    Nedumaran M; Singh S; Jamaldheen SB; Nath P; Moholkar VS; Goyal A
    Prep Biochem Biotechnol; 2020; 50(9):883-896. PubMed ID: 32425106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum.
    Wood BE; Ingram LO
    Appl Environ Microbiol; 1992 Jul; 58(7):2103-10. PubMed ID: 1637151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae.
    Shirley D; Oppert C; Reynolds TB; Miracle B; Oppert B; Klingeman WE; Jurat-Fuentes JL
    Insect Sci; 2014 Oct; 21(5):609-18. PubMed ID: 24318365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS
    Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae.
    Song X; Li Y; Wu Y; Cai M; Liu Q; Gao K; Zhang X; Bai Y; Xu H; Qiao M
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30107496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Engineered
    Choi HJ; Jin YS; Lee WH
    J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process.
    Geberekidan M; Zhang J; Liu ZL; Bao J
    Bioprocess Biosyst Eng; 2019 Feb; 42(2):297-304. PubMed ID: 30411143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.
    Tsai SL; Oh J; Singh S; Chen R; Chen W
    Appl Environ Microbiol; 2009 Oct; 75(19):6087-93. PubMed ID: 19684173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.