BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 19813703)

  • 1. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications.
    Tew GN; Scott RW; Klein ML; Degrado WF
    Acc Chem Res; 2010 Jan; 43(1):30-9. PubMed ID: 19813703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo designed synthetic mimics of antimicrobial peptides.
    Scott RW; DeGrado WF; Tew GN
    Curr Opin Biotechnol; 2008 Dec; 19(6):620-7. PubMed ID: 18996193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo design of biomimetic antimicrobial polymers.
    Tew GN; Liu D; Chen B; Doerksen RJ; Kaplan J; Carroll PJ; Klein ML; DeGrado WF
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5110-4. PubMed ID: 11959961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides.
    Cheng Q; Zeng P
    Curr Pharm Des; 2022; 28(44):3527-3537. PubMed ID: 36056849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing Quantifiable Guidelines for Antimicrobial α/β-Peptide Design: A Partial Least-Squares Approach to Improve Antimicrobial Activity and Reduce Mammalian Cell Toxicity.
    Chang DH; Lee MR; Wang N; Lynn DM; Palecek SP
    ACS Infect Dis; 2023 Dec; 9(12):2632-2651. PubMed ID: 38014670
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Lin S; Wade JD; Liu S
    Acc Chem Res; 2021 Jan; 54(1):104-119. PubMed ID: 33346639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Helix-Stabilized Antimicrobial Peptide Foldamers Containing α,α-Disubstituted Amino Acids or Side-Chain Stapling.
    Hirano M; Saito C; Goto C; Yokoo H; Kawano R; Misawa T; Demizu Y
    Chempluschem; 2020 Dec; 85(12):2731-2736. PubMed ID: 33369262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides.
    Zhou C; Qi X; Li P; Chen WN; Mouad L; Chang MW; Leong SS; Chan-Park MB
    Biomacromolecules; 2010 Jan; 11(1):60-7. PubMed ID: 19957992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.
    Ramesh S; Govender T; Kruger HG; de la Torre BG; Albericio F
    J Pept Sci; 2016 Jul; 22(7):438-51. PubMed ID: 27352996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers.
    Choi S; Isaacs A; Clements D; Liu D; Kim H; Scott RW; Winkler JD; DeGrado WF
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6968-73. PubMed ID: 19359494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data.
    Jhong JH; Chi YH; Li WC; Lin TH; Huang KY; Lee TY
    Nucleic Acids Res; 2019 Jan; 47(D1):D285-D297. PubMed ID: 30380085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity.
    Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A
    Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helical Antimicrobial Peptide Foldamers Containing Non-proteinogenic Amino Acids.
    Yokoo H; Hirano M; Misawa T; Demizu Y
    ChemMedChem; 2021 Apr; 16(8):1226-1233. PubMed ID: 33565721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Random Copolymers as a Molecular Platform To Mimic Host-Defense Antimicrobial Peptides.
    Takahashi H; Caputo GA; Vemparala S; Kuroda K
    Bioconjug Chem; 2017 May; 28(5):1340-1350. PubMed ID: 28379682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foldamers with heterogeneous backbones.
    Horne WS; Gellman SH
    Acc Chem Res; 2008 Oct; 41(10):1399-408. PubMed ID: 18590282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial polymers as synthetic mimics of host-defense peptides.
    Kuroda K; Caputo GA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):49-66. PubMed ID: 23076870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small AntiMicrobial Peptide With in Vivo Activity Against Sepsis.
    Boullet H; Bentot F; Hequet A; Ganem-Elbaz C; Bechara C; Pacreau E; Launay P; Sagan S; Jolivalt C; Lacombe C; Moumné R; Karoyan P
    Molecules; 2019 May; 24(9):. PubMed ID: 31052373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.