These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 19813739)

  • 1. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme.
    Panuszko A; Bruździak P; Zielkiewicz J; Wyrzykowski D; Stangret J
    J Phys Chem B; 2009 Nov; 113(44):14797-809. PubMed ID: 19813739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration of simple amides. FTIR spectra of HDO and theoretical studies.
    Panuszko A; Gojło E; Zielkiewicz J; Smiechowski M; Krakowiak J; Stangret J
    J Phys Chem B; 2008 Feb; 112(8):2483-93. PubMed ID: 18247601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of hydration water around hen egg lysozyme as the protein model in aqueous solution. FTIR spectroscopy and molecular dynamics simulation.
    Panuszko A; Wojciechowski M; Bruździak P; Rakowska PW; Stangret J
    Phys Chem Chem Phys; 2012 Dec; 14(45):15765-73. PubMed ID: 23093378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of urea, tetramethyl urea, and trimethylamine N-oxide on aqueous solution structure and solvation of protein backbones: a molecular dynamics simulation study.
    Wei H; Fan Y; Gao YQ
    J Phys Chem B; 2010 Jan; 114(1):557-68. PubMed ID: 19928871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model.
    Kuffel A; Zielkiewicz J
    J Chem Phys; 2010 Jul; 133(3):035102. PubMed ID: 20649360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization.
    Bruździak P; Panuszko A; Stangret J
    J Phys Chem B; 2013 Oct; 117(39):11502-8. PubMed ID: 23992436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of small hydrophobic solute in presence of the osmolytes urea and trimethylamine-N-oxide.
    Sarma R; Paul S
    J Phys Chem B; 2012 Mar; 116(9):2831-41. PubMed ID: 22300285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies.
    Bruździak P; Adamczak B; Kaczkowska E; Czub J; Stangret J
    Phys Chem Chem Phys; 2015 Sep; 17(35):23155-64. PubMed ID: 26278847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra.
    Smiechowski M; Stangret J
    J Chem Phys; 2006 Nov; 125(20):204508. PubMed ID: 17144716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic interactions in urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Phys Chem B; 2008 Sep; 112(35):11106-11. PubMed ID: 18683967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics.
    Beck DA; Bennion BJ; Alonso DO; Daggett V
    Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic study of hydration patterns of phosphoric(V) acid and its mono-, di-, and tripotassium salts in aqueous solution.
    Smiechowski M; Gojło E; Stangret J
    J Phys Chem B; 2009 May; 113(21):7650-61. PubMed ID: 19413357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cosolvents on the hydration of carbon nanotubes.
    Yang L; Gao YQ
    J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectroscopic studies of N,N'-dimethylpropyleneurea-water system: affected solvent spectra and factor analysis.
    Śmiechowski M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(4):712-21. PubMed ID: 20869300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect.
    Mazur K; Heisler IA; Meech SR
    J Phys Chem B; 2011 Mar; 115(11):2563-73. PubMed ID: 21355600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamine N-oxide.
    Reddy PM; Taha M; Venkatesu P; Kumar A; Lee MJ
    J Chem Phys; 2012 Jun; 136(23):234904. PubMed ID: 22779616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-mediated interactions between trimethylamine-N-oxide and urea.
    Hunger J; Ottosson N; Mazur K; Bonn M; Bakker HJ
    Phys Chem Chem Phys; 2015 Jan; 17(1):298-306. PubMed ID: 25138965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.