BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19814573)

  • 1. Charge-scaled cavities in polarizable continuum model: determination of acid dissociation constants for platinum-amino acid complexes.
    Zimmermann T; Burda JV
    J Chem Phys; 2009 Oct; 131(13):135101. PubMed ID: 19814573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of cisplatin with cysteine and methionine at constant pH; a computational study.
    Zimmermann T; Burda JV
    Dalton Trans; 2010 Feb; 39(5):1295-301. PubMed ID: 20104356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide.
    Risberg ED; Jalilehvand F; Leung BO; Pettersson LG; Sandström M
    Dalton Trans; 2009 May; (18):3542-58. PubMed ID: 19381417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cisplatin interaction with cysteine and methionine in aqueous solution: computational DFT/PCM study.
    Zimmermann T; Chval Z; Burda JV
    J Phys Chem B; 2009 Mar; 113(10):3139-50. PubMed ID: 19227999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cisplatin interaction with amino acids cysteine and methionine from gas phase to solutions with constant pH.
    Zimmermann T; Burda JV
    Interdiscip Sci; 2010 Mar; 2(1):98-114. PubMed ID: 20640800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio procedure for aqueous-phase pKa calculation: the acidity of nitrous acid.
    da Silva G; Kennedy EM; Dlugogorski BZ
    J Phys Chem A; 2006 Oct; 110(39):11371-6. PubMed ID: 17004748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cisplatin interaction with cysteine and methionine, a theoretical DFT study.
    Zimmermann T; Zeizinger M; Burda JV
    J Inorg Biochem; 2005 Nov; 99(11):2184-96. PubMed ID: 16183131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation barriers and rate constants for hydration of platinum and palladium square-planar complexes: an ab initio study.
    Burda JV; Zeizinger M; Leszczynski J
    J Chem Phys; 2004 Jan; 120(3):1253-62. PubMed ID: 15268251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the pKa values of water ligands in transition metal complexes using density functional theory with polarized continuum model solvent corrections.
    Gilson R; Durrant MC
    Dalton Trans; 2009 Dec; (46):10223-30. PubMed ID: 19921057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS).
    Sinnecker S; Rajendran A; Klamt A; Diedenhofen M; Neese F
    J Phys Chem A; 2006 Feb; 110(6):2235-45. PubMed ID: 16466261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes.
    Czodrowski P; Dramburg I; Sotriffer CA; Klebe G
    Proteins; 2006 Nov; 65(2):424-37. PubMed ID: 16927370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6-arene)(en)Cl]+ complexes: density functional theory computational study.
    Chval Z; Futera Z; Burda JV
    J Chem Phys; 2011 Jan; 134(2):024520. PubMed ID: 21241133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of a continuum solvation model to the octanol water transfer: CFF91 based model for amino acids.
    Schmidt AB; Fine RM
    Biopolymers; 1995 Nov; 36(5):599-605. PubMed ID: 7578951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of some representative density functional theory and wave function theory methods for the studies of amino acids.
    Yu W; Liang L; Lin Z; Ling S; Haranczyk M; Gutowski M
    J Comput Chem; 2009 Mar; 30(4):589-600. PubMed ID: 18711717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic g-tensors of solvated molecules using the polarizable continuum model.
    Rinkevicius Z; Telyatnyk L; Vahtras O; Ruud K
    J Chem Phys; 2004 Sep; 121(11):5051-60. PubMed ID: 15352795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameterization and validation of solvation corrected atomic radii.
    Zuo CS; Wiest O; Wu YD
    J Phys Chem A; 2009 Oct; 113(43):12028-34. PubMed ID: 19719098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the enol imine <--> enaminone tautomeric equilibrium in organic solvents.
    Nagy PI; Fabian WM
    J Phys Chem B; 2006 Dec; 110(49):25026-32. PubMed ID: 17149926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and accurate solvation energy calculation from polarizable continuum models.
    Lin ST; Hsieh CM
    J Chem Phys; 2006 Sep; 125(12):124103. PubMed ID: 17014162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.