These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 19814655)
1. Long-term and acute effects of gliadin on small intestine of patients on potentially pathogenic networks in celiac disease. Castellanos-Rubio A; Santin I; Martin-Pagola A; Irastorza I; Castaño L; Vitoria JC; Bilbao JR Autoimmunity; 2010 Mar; 43(2):131-9. PubMed ID: 19814655 [TBL] [Abstract][Full Text] [Related]
2. Pathways of gliadin transport in celiac disease. Heyman M; Menard S Ann N Y Acad Sci; 2009 May; 1165():274-8. PubMed ID: 19538316 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of budesonide therapy in the early phase of treatment of adult coeliac disease patients with malabsorption: an in vivo/in vitro pilot study. Ciacci C; Maiuri L; Russo I; Tortora R; Bucci C; Cappello C; Santonicola A; Luciani A; Passananti V; Iovino P Clin Exp Pharmacol Physiol; 2009 Dec; 36(12):1170-6. PubMed ID: 19473192 [TBL] [Abstract][Full Text] [Related]
4. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Davidson ME; Kerepesi LA; Soto A; Chan VT Arch Toxicol; 2009 Aug; 83(8):747-62. PubMed ID: 19212759 [TBL] [Abstract][Full Text] [Related]
5. microRNA profiles in coeliac patients distinguish different clinical phenotypes and are modulated by gliadin peptides in primary duodenal fibroblasts. Vaira V; Roncoroni L; Barisani D; Gaudioso G; Bosari S; Bulfamante G; Doneda L; Conte D; Tomba C; Bardella MT; Ferrero S; Locatelli M; Elli L Clin Sci (Lond); 2014 Mar; 126(6):417-23. PubMed ID: 24063611 [TBL] [Abstract][Full Text] [Related]
6. Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Pizzuti D; Buda A; D'Odorico A; D'Incà R; Chiarelli S; Curioni A; Martines D Scand J Gastroenterol; 2006 Nov; 41(11):1305-11. PubMed ID: 17060124 [TBL] [Abstract][Full Text] [Related]
7. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response. Soto A; DelRaso NJ; Schlager JJ; Chan VT Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331 [TBL] [Abstract][Full Text] [Related]
8. Combined functional and positional gene information for the identification of susceptibility variants in celiac disease. Castellanos-Rubio A; Martin-Pagola A; Santín I; Hualde I; Aransay AM; Castaño L; Vitoria JC; Bilbao JR Gastroenterology; 2008 Mar; 134(3):738-46. PubMed ID: 18241860 [TBL] [Abstract][Full Text] [Related]
9. Adaptive and innate immune responses in celiac disease. Gianfrani C; Auricchio S; Troncone R Immunol Lett; 2005 Jul; 99(2):141-5. PubMed ID: 15876458 [TBL] [Abstract][Full Text] [Related]
10. TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin. Castellanos-Rubio A; Santin I; Irastorza I; Castaño L; Carlos Vitoria J; Ramon Bilbao J Autoimmunity; 2009 Jan; 42(1):69-73. PubMed ID: 19127457 [TBL] [Abstract][Full Text] [Related]
11. Gliadin as a stimulator of innate responses in celiac disease. Londei M; Ciacci C; Ricciardelli I; Vacca L; Quaratino S; Maiuri L Mol Immunol; 2005 May; 42(8):913-8. PubMed ID: 15829281 [TBL] [Abstract][Full Text] [Related]
12. MICA response to gliadin in intestinal mucosa from celiac patients. Martín-Pagola A; Pérez-Nanclares G; Ortiz L; Vitoria JC; Hualde I; Zaballa R; Preciado E; Castaño L; Bilbao JR Immunogenetics; 2004 Nov; 56(8):549-54. PubMed ID: 15490153 [TBL] [Abstract][Full Text] [Related]
13. Prevention by a decapeptide from durum wheat of in vitro gliadin peptide-induced apoptosis in small-bowel mucosa from coeliac patients. Silano M; Leonardi F; Trecca A; Mancini E; Di Benedetto R; De Vincenzi M Scand J Gastroenterol; 2007 Jun; 42(6):786-7. PubMed ID: 17506006 [No Abstract] [Full Text] [Related]
14. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Di Sabatino A; Pickard KM; Gordon JN; Salvati V; Mazzarella G; Beattie RM; Vossenkaemper A; Rovedatti L; Leakey NA; Croft NM; Troncone R; Corazza GR; Stagg AJ; Monteleone G; MacDonald TT Gastroenterology; 2007 Oct; 133(4):1175-87. PubMed ID: 17919493 [TBL] [Abstract][Full Text] [Related]
15. Neutrophil recruitment and barrier impairment in celiac disease: a genomic study. Diosdado B; van Bakel H; Strengman E; Franke L; van Oort E; Mulder CJ; Wijmenga C; Wapenaar MC Clin Gastroenterol Hepatol; 2007 May; 5(5):574-81. PubMed ID: 17336591 [TBL] [Abstract][Full Text] [Related]
16. Unexpected role of surface transglutaminase type II in celiac disease. Maiuri L; Ciacci C; Ricciardelli I; Vacca L; Raia V; Rispo A; Griffin M; Issekutz T; Quaratino S; Londei M Gastroenterology; 2005 Nov; 129(5):1400-13. PubMed ID: 16285941 [TBL] [Abstract][Full Text] [Related]
17. Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Verdu EF; Huang X; Natividad J; Lu J; Blennerhassett PA; David CS; McKay DM; Murray JA Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G217-25. PubMed ID: 18006603 [TBL] [Abstract][Full Text] [Related]
19. Wheat starch, gliadin, and the gluten-free diet. Thompson T J Am Diet Assoc; 2001 Dec; 101(12):1456-9. PubMed ID: 11762742 [TBL] [Abstract][Full Text] [Related]
20. Local challenge on oral mucosa with an alpha-gliadin related synthetic peptide in patients with celiac disease. Lähteenoja H; Mäki M; Viander M; Räihä I; Vilja P; Rantala I; Toivanen A; Syrjänen S Am J Gastroenterol; 2000 Oct; 95(10):2880-7. PubMed ID: 11051363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]