BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19815003)

  • 1. Aromatase expression in the normal and epileptic human hippocampus.
    Yague JG; Azcoitia I; DeFelipe J; Garcia-Segura LM; Muñoz A
    Brain Res; 2010 Feb; 1315():41-52. PubMed ID: 19815003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus.
    Sloviter RS; Sollas AL; Barbaro NM; Laxer KD
    J Comp Neurol; 1991 Jun; 308(3):381-96. PubMed ID: 1865007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.
    Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J
    Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity.
    Sloviter RS
    J Comp Neurol; 1989 Feb; 280(2):183-96. PubMed ID: 2925892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey.
    Seress L; Gulyás AI; Freund TF
    J Comp Neurol; 1991 Nov; 313(1):162-77. PubMed ID: 1761752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate receptor subunit 3 (GluR3) immunoreactivity delineates a subpopulation of parvalbumin-containing interneurons in the rat hippocampus.
    Moga DE; Janssen WG; Vissavajjhala P; Czelusniak SM; Moran TM; Hof PR; Morrison JH
    J Comp Neurol; 2003 Jul; 462(1):15-28. PubMed ID: 12761821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy.
    Bouilleret V; Loup F; Kiener T; Marescaux C; Fritschy JM
    Hippocampus; 2000; 10(3):305-24. PubMed ID: 10902900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats.
    Shetty AK; Turner DA
    J Comp Neurol; 1998 May; 394(2):252-69. PubMed ID: 9552130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism.
    Lawrence YA; Kemper TL; Bauman ML; Blatt GJ
    Acta Neurol Scand; 2010 Feb; 121(2):99-108. PubMed ID: 19719810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus.
    Andrioli A; Alonso-Nanclares L; Arellano JI; DeFelipe J
    Neuroscience; 2007 Oct; 149(1):131-43. PubMed ID: 17850980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatase expression in the human temporal cortex.
    Yague JG; Muñoz A; de Monasterio-Schrader P; Defelipe J; Garcia-Segura LM; Azcoitia I
    Neuroscience; 2006; 138(2):389-401. PubMed ID: 16426763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the neuronal calcium sensor visinin-like protein-1 in the rat hippocampus.
    Zhao C; Braunewell KH
    Neuroscience; 2008 Jun; 153(4):1202-12. PubMed ID: 18440708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatase distribution in the monkey temporal neocortex and hippocampus.
    Yague JG; Wang AC; Janssen WG; Hof PR; Garcia-Segura LM; Azcoitia I; Morrison JH
    Brain Res; 2008 May; 1209():115-27. PubMed ID: 18402929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation.
    Pitkänen A; Amaral DG
    J Comp Neurol; 1993 May; 331(1):37-74. PubMed ID: 8320348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deafferentation removes calretinin immunopositive terminals, but does not induce degeneration of calbindin D-28k and parvalbumin expressing neurons in the hippocampus of adult rats.
    Beck KD; Hefti F; Widmer HR
    J Neurosci Res; 1994 Oct; 39(3):298-304. PubMed ID: 7869422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of nerve growth factor and neurotrophin-3 mRNAs in hippocampal interneurons: morphological characterization, levels of expression, and colocalization of nerve growth factor and neurotrophin-3.
    Pascual M; Rocamora N; Acsády L; Freund TF; Soriano E
    J Comp Neurol; 1998 May; 395(1):73-90. PubMed ID: 9590547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex.
    Mikkonen M; Soininen H; Pitkänen A
    J Comp Neurol; 1997 Nov; 388(1):64-88. PubMed ID: 9364239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of CA3 area of the mouse hippocampus after pilocarpine induced temporal lobe epilepsy with special reference to the CA3-septum pathway.
    Ma DL; Tang YC; Chen PM; Chia SC; Jiang FL; Burgunder JM; Lee WL; Tang FR
    J Neurosci Res; 2006 Feb; 83(2):318-31. PubMed ID: 16385555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology.
    Condé F; Lund JS; Jacobowitz DM; Baimbridge KG; Lewis DA
    J Comp Neurol; 1994 Mar; 341(1):95-116. PubMed ID: 8006226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.