These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19815062)

  • 61. A comparative pH-dissolution profile study of selected commercial levothyroxine products using inductively coupled plasma mass spectrometry.
    Pabla D; Akhlaghi F; Zia H
    Eur J Pharm Biopharm; 2009 May; 72(1):105-10. PubMed ID: 18996189
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The scientific basis for establishing solubility criteria for veterinary species.
    Martinez MN; Fahmy R
    J Vet Pharmacol Ther; 2012 Apr; 35 Suppl 1():81-6. PubMed ID: 22413794
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Equilibrium drug solubility measurements in 96-well plates reveal similar drug solubilities in phosphate buffer pH 6.8 and human intestinal fluid.
    Heikkilä T; Karjalainen M; Ojala K; Partola K; Lammert F; Augustijns P; Urtti A; Yliperttula M; Peltonen L; Hirvonen J
    Int J Pharm; 2011 Feb; 405(1-2):132-6. PubMed ID: 21146596
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement.
    Murdande SB; Pikal MJ; Shanker RM; Bogner RH
    Pharm Dev Technol; 2011 Jun; 16(3):187-200. PubMed ID: 20429826
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Impact of Simulated Intestinal Fluids on Dissolution, Solution Chemistry, and Membrane Transport of Amorphous Multidrug Formulations.
    El Sayed M; Alhalaweh A; Bergström CAS
    Mol Pharm; 2021 Nov; 18(11):4079-4089. PubMed ID: 34613730
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of suitable formulations for high dose oral studies in rats using in vitro solubility measurements, the maximum absorbable dose model, and historical data sets.
    Wuelfing WP; Kwong E; Higgins J
    Mol Pharm; 2012 May; 9(5):1163-74. PubMed ID: 22394323
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs.
    David SE; Timmins P; Conway BR
    Drug Dev Ind Pharm; 2012 Jan; 38(1):93-103. PubMed ID: 22118222
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Themed issue: improve dissolution, solubility and bioavailability of poorly soluble drugs.
    Perrie Y; Rades T
    J Pharm Pharmacol; 2010 Nov; 62(11):1517-8. PubMed ID: 21039536
    [No Abstract]   [Full Text] [Related]  

  • 69. A case study where pharmaceutical salts were used to address the issue of low in vivo exposure.
    Sigfridsson K; Ulvinge ML; Svensson L; Granath AK
    Drug Dev Ind Pharm; 2019 Feb; 45(2):202-211. PubMed ID: 30256689
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mathematical Models to Explore Potential Effects of Supersaturation and Precipitation on Oral Bioavailability of Poorly Soluble Drugs.
    Kleppe MS; Forney-Stevens KM; Haskell RJ; Bogner RH
    AAPS J; 2015 Jul; 17(4):902-17. PubMed ID: 25851513
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of key factors affecting the oral absorption of salts of lipophilic weak acids: a case example.
    Petrakis O; Vertzoni M; Angelou A; Kesisoglou F; Bentz K; Goumas K; Reppas C
    J Pharm Pharmacol; 2015 Jan; 67(1):56-67. PubMed ID: 25252222
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine.
    Kostewicz ES; Wunderlich M; Brauns U; Becker R; Bock T; Dressman JB
    J Pharm Pharmacol; 2004 Jan; 56(1):43-51. PubMed ID: 14980000
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Amino Acids as the Potential Co-Former for Co-Crystal Development: A Review.
    Nugrahani I; Jessica MA
    Molecules; 2021 May; 26(11):. PubMed ID: 34071731
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Estimation of intragastric solubility of drugs: in what medium?
    Vertzoni M; Pastelli E; Psachoulias D; Kalantzi L; Reppas C
    Pharm Res; 2007 May; 24(5):909-17. PubMed ID: 17372688
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pharmaceutical cocrystals: the coming wave of new drug substances.
    Brittain HG
    J Pharm Sci; 2013 Feb; 102(2):311-7. PubMed ID: 23192888
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rational coformer or solvent selection for pharmaceutical cocrystallization or desolvation.
    Abramov YA; Loschen C; Klamt A
    J Pharm Sci; 2012 Oct; 101(10):3687-97. PubMed ID: 22821740
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interlaboratory Validation of Small-Scale Solubility and Dissolution Measurements of Poorly Water-Soluble Drugs.
    Andersson SBE; Alvebratt C; Bevernage J; Bonneau D; da Costa Mathews C; Dattani R; Edueng K; He Y; Holm R; Madsen C; Müller T; Muenster U; Müllertz A; Ojala K; Rades T; Sieger P; Bergström CAS
    J Pharm Sci; 2016 Sep; 105(9):2864-2872. PubMed ID: 27112289
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performance.
    Hawley M; Morozowich W
    Mol Pharm; 2010 Oct; 7(5):1441-9. PubMed ID: 20731341
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems.
    Pedro SN; Freire MG; Freire CSR; Silvestre AJD
    Expert Opin Drug Deliv; 2019 May; 16(5):497-506. PubMed ID: 30955386
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Automated small-scale in vitro transfer model as screening tool for the prediction of in vivo-dissolution and precipitation of poorly solubles.
    Jede C; Wagner C; Kubas H; Weber C; Weigandt M; Koziolek M; Weitschies W
    Int J Pharm; 2019 Feb; 556():150-158. PubMed ID: 30553006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.