These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
3. Using manifold learning for atlas selection in multi-atlas segmentation. Hoang Duc AK; Modat M; Leung KK; Cardoso MJ; Barnes J; Kadir T; Ourselin S; PLoS One; 2013; 8(8):e70059. PubMed ID: 23936376 [TBL] [Abstract][Full Text] [Related]
4. Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Heckemann RA; Keihaninejad S; Aljabar P; Rueckert D; Hajnal JV; Hammers A; Neuroimage; 2010 May; 51(1):221-7. PubMed ID: 20114079 [TBL] [Abstract][Full Text] [Related]
5. Metric Learning for Multi-atlas based Segmentation of Hippocampus. Zhu H; Cheng H; Yang X; Fan Y; Neuroinformatics; 2017 Jan; 15(1):41-50. PubMed ID: 27638650 [TBL] [Abstract][Full Text] [Related]
6. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction. Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938 [TBL] [Abstract][Full Text] [Related]
7. A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation. Wang H; Das SR; Suh JW; Altinay M; Pluta J; Craige C; Avants B; Yushkevich PA; Neuroimage; 2011 Apr; 55(3):968-85. PubMed ID: 21237273 [TBL] [Abstract][Full Text] [Related]
8. Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation. Hao Y; Wang T; Zhang X; Duan Y; Yu C; Jiang T; Fan Y; Hum Brain Mapp; 2014 Jun; 35(6):2674-97. PubMed ID: 24151008 [TBL] [Abstract][Full Text] [Related]
9. Multi-atlas label fusion with random local binary pattern features: Application to hippocampus segmentation. Zhu H; Tang Z; Cheng H; Wu Y; Fan Y Sci Rep; 2019 Nov; 9(1):16839. PubMed ID: 31727982 [TBL] [Abstract][Full Text] [Related]
10. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation. Liyanage KA; Steward C; Moffat BA; Opie NL; Rind GS; John SE; Ronayne S; May CN; O'Brien TJ; Milne ME; Oxley TJ PLoS One; 2016; 11(6):e0155974. PubMed ID: 27285947 [TBL] [Abstract][Full Text] [Related]
11. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Iglesias JE; Augustinack JC; Nguyen K; Player CM; Player A; Wright M; Roy N; Frosch MP; McKee AC; Wald LL; Fischl B; Van Leemput K; Neuroimage; 2015 Jul; 115():117-37. PubMed ID: 25936807 [TBL] [Abstract][Full Text] [Related]
12. Atlas selection for hippocampus segmentation: Relevance evaluation of three meta-information parameters. Dill V; Klein PC; Franco AR; Pinho MS Comput Biol Med; 2018 Apr; 95():90-98. PubMed ID: 29476982 [TBL] [Abstract][Full Text] [Related]
13. Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation. Shi F; Yap PT; Fan Y; Gilmore JH; Lin W; Shen D Neuroimage; 2010 Jun; 51(2):684-93. PubMed ID: 20171290 [TBL] [Abstract][Full Text] [Related]
14. Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. Park MT; Pipitone J; Baer LH; Winterburn JL; Shah Y; Chavez S; Schira MM; Lobaugh NJ; Lerch JP; Voineskos AN; Chakravarty MM Neuroimage; 2014 Jul; 95():217-31. PubMed ID: 24657354 [TBL] [Abstract][Full Text] [Related]
15. Local manifold learning for multiatlas segmentation: application to hippocampal segmentation in healthy population and Alzheimer's disease. Li XW; Li QL; Li SY; Li DY; CNS Neurosci Ther; 2015 Oct; 21(10):826-36. PubMed ID: 26122409 [TBL] [Abstract][Full Text] [Related]
16. MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. Doshi J; Erus G; Ou Y; Resnick SM; Gur RC; Gur RE; Satterthwaite TD; Furth S; Davatzikos C; Neuroimage; 2016 Feb; 127():186-195. PubMed ID: 26679328 [TBL] [Abstract][Full Text] [Related]
17. Stereotaxic Magnetic Resonance Imaging Brain Atlases for Infants from 3 to 12 Months. Fillmore PT; Richards JE; Phillips-Meek MC; Cryer A; Stevens M Dev Neurosci; 2015; 37(6):515-32. PubMed ID: 26440296 [TBL] [Abstract][Full Text] [Related]
18. Automatic labeling of MR brain images through extensible learning and atlas forests. Xu L; Liu H; Song E; Yan M; Jin R; Hung CC Med Phys; 2017 Dec; 44(12):6329-6340. PubMed ID: 28921541 [TBL] [Abstract][Full Text] [Related]
19. SOMA: Subject-, object-, and modality-adapted precision atlas approach for automatic anatomy recognition and delineation in medical images. Li J; Udupa JK; Odhner D; Tong Y; Torigian DA Med Phys; 2021 Dec; 48(12):7806-7825. PubMed ID: 34668207 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Gousias IS; Rueckert D; Heckemann RA; Dyet LE; Boardman JP; Edwards AD; Hammers A Neuroimage; 2008 Apr; 40(2):672-684. PubMed ID: 18234511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]