These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 19815096)
1. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy. Nouri A; Hodgson PD; Wen CE Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096 [TBL] [Abstract][Full Text] [Related]
2. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Xiong J; Li Y; Wang X; Hodgson P; Wen C Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702 [TBL] [Abstract][Full Text] [Related]
4. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
5. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering. Xie F; He X; Lu X; Cao S; Qu X Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546 [TBL] [Abstract][Full Text] [Related]
6. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder. Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171 [TBL] [Abstract][Full Text] [Related]
7. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder. Gülsoy HÖ; Gülsoy N; Calışıcı R Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399 [TBL] [Abstract][Full Text] [Related]
8. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
9. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Chen XB; Li YC; Hodgson PD; Wen C Acta Biomater; 2009 Jul; 5(6):2290-302. PubMed ID: 19307162 [TBL] [Abstract][Full Text] [Related]
10. HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling. Dutkiewicz J; Lityńska L; Maziarz W; Kocisko R; Molnarová M; Kovácová A Micron; 2009 Jan; 40(1):1-5. PubMed ID: 18614372 [TBL] [Abstract][Full Text] [Related]
11. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
12. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti-6Al-7Nb alloy. Bolzoni L; Ruiz-Navas EM; Neubauer E; Gordo E J Mech Behav Biomed Mater; 2012 May; 9():91-9. PubMed ID: 22498287 [TBL] [Abstract][Full Text] [Related]
14. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders. Liu Y; Li K; Wu H; Song M; Wang W; Li N; Tang H J Mech Behav Biomed Mater; 2015 Nov; 51():302-12. PubMed ID: 26275506 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of Ti-Ta-Nb-Mn foams. Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications. Alshammari Y; Yang F; Bolzoni L J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199 [TBL] [Abstract][Full Text] [Related]
18. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847 [TBL] [Abstract][Full Text] [Related]
19. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy]. Ding X; Liang X; Chao Y; Han X Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Jun; 18(3):147-9. PubMed ID: 12539662 [TBL] [Abstract][Full Text] [Related]
20. Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering. Sakamoto Y; Asaoka K; Kon M; Matsubara T; Yoshida K Biomed Mater Eng; 2006; 16(2):83-91. PubMed ID: 16477117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]