These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Lévesque J; Hermawan H; Dubé D; Mantovani D Acta Biomater; 2008 Mar; 4(2):284-95. PubMed ID: 18033745 [TBL] [Abstract][Full Text] [Related]
3. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172 [TBL] [Abstract][Full Text] [Related]
4. [Development of biodegradable magnesium-based biomaterials]. Zhu S; Xu L; Huang N Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):437-9, 451. PubMed ID: 19499820 [TBL] [Abstract][Full Text] [Related]
5. A new wave in treatment of vascular occlusive disease: biodegradable stents--clinical experience and scientific principles. Brown DA; Lee EW; Loh CT; Kee ST J Vasc Interv Radiol; 2009 Mar; 20(3):315-24; quiz 325. PubMed ID: 19157901 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable stents: they do their job and disappear. Waksman R J Invasive Cardiol; 2006 Feb; 18(2):70-4. PubMed ID: 16446520 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Moravej M; Mantovani D Int J Mol Sci; 2011; 12(7):4250-70. PubMed ID: 21845076 [TBL] [Abstract][Full Text] [Related]
9. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent]. Wang X; Cui F; Li J; Zhao X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798 [TBL] [Abstract][Full Text] [Related]
10. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Yang J; Guo JL; Mikos AG; He C; Cheng G Ann Biomed Eng; 2018 Sep; 46(9):1229-1240. PubMed ID: 29869105 [TBL] [Abstract][Full Text] [Related]
11. Bio-Functional Design, Application and Trends in Metallic Biomaterials. Yang K; Zhou C; Fan H; Fan Y; Jiang Q; Song P; Fan H; Chen Y; Zhang X Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29271916 [TBL] [Abstract][Full Text] [Related]
12. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. Hermawan H; Dubé D; Mantovani D J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432 [TBL] [Abstract][Full Text] [Related]
13. Update on bioabsorbable stents: from bench to clinical. Waksman R J Interv Cardiol; 2006 Oct; 19(5):414-21. PubMed ID: 17020566 [TBL] [Abstract][Full Text] [Related]
14. Engineering aspects of stents design and their translation into clinical practice. Sangiorgi G; Melzi G; Agostoni P; Cola C; Clementi F; Romitelli P; Virmani R; Colombo A Ann Ist Super Sanita; 2007; 43(1):89-100. PubMed ID: 17536159 [TBL] [Abstract][Full Text] [Related]
15. Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease. Kohn J; Zeltinger J Expert Rev Med Devices; 2005 Nov; 2(6):667-71. PubMed ID: 16293093 [TBL] [Abstract][Full Text] [Related]
19. Iron and iron-based alloys for temporary cardiovascular applications. Francis A; Yang Y; Virtanen S; Boccaccini AR J Mater Sci Mater Med; 2015 Mar; 26(3):138. PubMed ID: 25716025 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra. Isotalo TM; Nuutine JP; Vaajanen A; Martikainen PM; Laurila M; Törmälä P; Talja M; Tammela TL BJU Int; 2006 Apr; 97(4):856-9. PubMed ID: 16536787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]