These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 19815308)

  • 1. Different gene regulation strategies revealed by analysis of binding motifs.
    Wunderlich Z; Mirny LA
    Trends Genet; 2009 Oct; 25(10):434-40. PubMed ID: 19815308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRiP: a computational tool to simulate transcription factor binding in prokaryotes.
    Zabet NR; Adryan B
    Bioinformatics; 2012 May; 28(9):1287-9. PubMed ID: 22426343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of TF target sites based on atomistic models of protein-DNA complexes.
    Angarica VE; Pérez AG; Vasconcelos AT; Collado-Vides J; Contreras-Moreira B
    BMC Bioinformatics; 2008 Oct; 9():436. PubMed ID: 18922190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-dependent sliding kinetics of p53.
    Leith JS; Tafvizi A; Huang F; Uspal WE; Doyle PS; Fersht AR; Mirny LA; van Oijen AM
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16552-7. PubMed ID: 23012405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?
    Georges AB; Benayoun BA; Caburet S; Veitia RA
    FASEB J; 2010 Feb; 24(2):346-56. PubMed ID: 19762556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of gene transcription regulation in prokaryotes.
    Zhou D; Yang R
    Cell Mol Life Sci; 2006 Oct; 63(19-20):2260-90. PubMed ID: 16927028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepTFactor: A deep learning-based tool for the prediction of transcription factors.
    Kim GB; Gao Y; Palsson BO; Lee SY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Abundance of DNA-Binding Transcription Factors in Prokaryotes.
    Sanchez I; Hernandez-Guerrero R; Mendez-Monroy PE; Martinez-Nuñez MA; Ibarra JA; Pérez-Rueda E
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31947717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric bootstrapping for biological sequence motifs.
    O'Neill PK; Erill I
    BMC Bioinformatics; 2016 Oct; 17(1):406. PubMed ID: 27716039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic limits to gene regulation by global crosstalk.
    Friedlander T; Prizak R; Guet CC; Barton NH; Tkačik G
    Nat Commun; 2016 Aug; 7():12307. PubMed ID: 27489144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the evolution of transcription factor binding preferences in complex eukaryotes.
    Rosanova A; Colliva A; Osella M; Caselle M
    Sci Rep; 2017 Aug; 7(1):7596. PubMed ID: 28790414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity regression predicts evolution of transcription factor sequence specificity.
    Lambert SA; Yang AWH; Sasse A; Cowley G; Albu M; Caddick MX; Morris QD; Weirauch MT; Hughes TR
    Nat Genet; 2019 Jun; 51(6):981-989. PubMed ID: 31133749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generic approach to identify Transcription Factor-specific operator motifs; Inferences for LacI-family mediated regulation in Lactobacillus plantarum WCFS1.
    Francke C; Kerkhoven R; Wels M; Siezen RJ
    BMC Genomics; 2008 Mar; 9():145. PubMed ID: 18371204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.