BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19815511)

  • 1. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants.
    Hawkins JS; Proulx SR; Rapp RA; Wendel JF
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17811-6. PubMed ID: 19815511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium.
    Hawkins JS; Hu G; Rapp RA; Grafenberg JL; Wendel JF
    Genome; 2008 Jan; 51(1):11-8. PubMed ID: 18356935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium.
    Hawkins JS; Kim H; Nason JD; Wing RA; Wendel JF
    Genome Res; 2006 Oct; 16(10):1252-61. PubMed ID: 16954538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Survey and Comparative Analysis of Long Terminal Repeat (LTR) Retrotransposon Families in Four Gossypium Species.
    Liu Z; Liu Y; Liu F; Zhang S; Wang X; Lu Q; Wang K; Zhang B; Peng R
    Sci Rep; 2018 Jun; 8(1):9399. PubMed ID: 29925876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice.
    Ma J; Devos KM; Bennetzen JL
    Genome Res; 2004 May; 14(5):860-9. PubMed ID: 15078861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution.
    Vitte C; Bennetzen JL
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17638-43. PubMed ID: 17101966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice.
    Wang H; Liu JS
    BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phylogenetic analysis of indel dynamics in the cotton genus.
    Grover CE; Yu Y; Wing RA; Paterson AH; Wendel JF
    Mol Biol Evol; 2008 Jul; 25(7):1415-28. PubMed ID: 18400789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
    Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ
    Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The landscape and structural diversity of LTR retrotransposons in Musa genome.
    Nouroz F; Noreen S; Ahmad H; Heslop-Harrison JSP
    Mol Genet Genomics; 2017 Oct; 292(5):1051-1067. PubMed ID: 28601922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species.
    Manetti ME; Rossi M; Nakabashi M; Grandbastien MA; Van Sluys MA
    Mol Genet Genomics; 2009 Mar; 281(3):261-71. PubMed ID: 19093134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cotton centromere contains a Ty3-gypsy-like LTR retroelement.
    Luo S; Mach J; Abramson B; Ramirez R; Schurr R; Barone P; Copenhaver G; Folkerts O
    PLoS One; 2012; 7(4):e35261. PubMed ID: 22536361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data.
    Tetreault HM; Ungerer MC
    G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
    Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J
    Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of high level of sequence conservation and divergence regions in cotton.
    Wang K; Zhang W; Cao Y; Zhang Z; Zheng D; Zhou B; Guo W; Zhang T
    Theor Appl Genet; 2012 May; 124(7):1173-82. PubMed ID: 22212344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of a transcriptionally active Ty1/copia-like retrotransposon in Gossypium.
    Cao Y; Jiang Y; Ding M; He S; Zhang H; Lin L; Rong J
    Plant Cell Rep; 2015 Jun; 34(6):1037-47. PubMed ID: 25693493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium).
    Grover CE; Kim H; Wing RA; Paterson AH; Wendel JF
    Plant J; 2007 Jun; 50(6):995-1006. PubMed ID: 17461788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.