BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19815512)

  • 41. Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis.
    Wu J; Liu F; Ma J; Silbey RJ; Cao J
    J Chem Phys; 2012 Nov; 137(17):174111. PubMed ID: 23145721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC.
    Kholod Y; DeFilippo M; Reed B; Valdez D; Gillan G; Kosenkov D
    J Comput Chem; 2018 Mar; 39(8):438-449. PubMed ID: 29243269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measures and implications of electronic coherence in photosynthetic light-harvesting.
    Smyth C; Fassioli F; Scholes GD
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3728-49. PubMed ID: 22753823
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Variety, the spice of life and essential for robustness in excitation energy transfer in light-harvesting complexes.
    Oh SA; Coker DF; Hutchinson DAW
    Faraday Discuss; 2019 Dec; 221(0):59-76. PubMed ID: 31552998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid QM/MM study of FMO complex with polarized protein-specific charge.
    Jia X; Mei Y; Zhang JZ; Mo Y
    Sci Rep; 2015 Nov; 5():17096. PubMed ID: 26611739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An investigation into the energy transfer efficiency of a two-pigment photosynthetic system using a macroscopic quantum model.
    Ghasemi F; Shafiee A
    Biosystems; 2020 Nov; 197():104209. PubMed ID: 32730839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Classical master equation for excitonic transport under the influence of an environment.
    Eisfeld A; Briggs JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046118. PubMed ID: 22680549
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach.
    Saer RG; Stadnytskyi V; Magdaong NC; Goodson C; Savikhin S; Blankenship RE
    Biochim Biophys Acta Bioenerg; 2017 Apr; 1858(4):288-296. PubMed ID: 28159567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alpha-helices direct excitation energy flow in the Fenna Matthews Olson protein.
    Müh F; Madjet Mel-A; Adolphs J; Abdurahman A; Rabenstein B; Ishikita H; Knapp EW; Renger T
    Proc Natl Acad Sci U S A; 2007 Oct; 104(43):16862-7. PubMed ID: 17940020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial photosynthesis begins with quantum-mechanical coherence.
    Sumi H
    Chem Rec; 2001; 1(6):480-93. PubMed ID: 11933253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantum Entanglement and State-Transference in Fenna-Matthews-Olson Complexes: A Post-Experimental Simulation Analysis in the Computational Biology Domain.
    Delgado F; Enríquez M
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coherence dynamics in photosynthesis: protein protection of excitonic coherence.
    Lee H; Cheng YC; Fleming GR
    Science; 2007 Jun; 316(5830):1462-5. PubMed ID: 17556580
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coherent excitation energy transfer in model photosynthetic reaction center: Effects of non-Markovian quantum environment.
    Fang J; Chen ZH; Su Y; Zhu ZF; Wang Y; Xu RX; Yan Y
    J Chem Phys; 2022 Aug; 157(8):084119. PubMed ID: 36050008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment.
    Tao MJ; Ai Q; Deng FG; Cheng YC
    Sci Rep; 2016 Jun; 6():27535. PubMed ID: 27277702
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control.
    Fransted KA; Caram JR; Hayes D; Engel GS
    J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method.
    Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV
    J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex.
    Caram JR; Lewis NH; Fidler AF; Engel GS
    J Chem Phys; 2012 Mar; 136(10):104505. PubMed ID: 22423846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.
    Collini E; Wong CY; Wilk KE; Curmi PM; Brumer P; Scholes GD
    Nature; 2010 Feb; 463(7281):644-7. PubMed ID: 20130647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells.
    Dahlberg PD; Ting PC; Massey SC; Allodi MA; Martin EC; Hunter CN; Engel GS
    Nat Commun; 2017 Oct; 8(1):988. PubMed ID: 29042567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein.
    Wen J; Zhang H; Gross ML; Blankenship RE
    Biochemistry; 2011 May; 50(17):3502-11. PubMed ID: 21449539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.