BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19815512)

  • 61. Long-lived quantum coherence and non-Markovianity of photosynthetic complexes.
    Chen HB; Lien JY; Hwang CC; Chen YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042147. PubMed ID: 24827232
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamics of light harvesting in photosynthesis.
    Cheng YC; Fleming GR
    Annu Rev Phys Chem; 2009; 60():241-62. PubMed ID: 18999996
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.
    Strakhovskaya MG; Lukashev EP; Korvatovskiy BN; Kholina EG; Seifullina NK; Knox PP; Paschenko VZ
    Photosynth Res; 2021 Feb; 147(2):197-209. PubMed ID: 33389445
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Coherence and Efficient Energy Transfer in Molecular Wires: Insights from Surface Hopping Simulations.
    Sindhu A; Jain A
    Chemphyschem; 2022 Dec; 23(24):e202200392. PubMed ID: 35944188
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework.
    Tiwari V; Peters WK; Jonas DM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1203-8. PubMed ID: 23267114
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions.
    Oh SA; Coker DF; Hutchinson DAW
    J Chem Phys; 2019 Feb; 150(8):085102. PubMed ID: 30823745
    [TBL] [Abstract][Full Text] [Related]  

  • 67. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes.
    Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R
    J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impact of Spatial Inhomogeneity on Excitation Energy Transport in the Fenna-Matthews-Olson Complex.
    Bose A; Walters PL
    J Phys Chem B; 2023 Sep; 127(36):7663-7673. PubMed ID: 37647510
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Theory and Simulation of the Environmental Effects on FMO Electronic Transitions.
    Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U
    J Phys Chem Lett; 2011 Jun; 2011(2):1771-1776. PubMed ID: 21804928
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optimization of exciton currents in photosynthetic systems.
    Guan C; Wu N; Zhao Y
    J Chem Phys; 2013 Mar; 138(11):115102. PubMed ID: 23534666
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation.
    Abramavicius V; Abramavicius D
    J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.
    Oka H
    Sci Rep; 2016 May; 6():26058. PubMed ID: 27173144
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of Spatially Correlated Fluctuations in Photosynthetic Excitation Energy Transfer with an Equilibrium and a Nonequilibrium Initial Bath.
    Du M; Qin M; Cui H; Wang C; Xu Y; Ma X; Yi X
    J Phys Chem B; 2021 Jun; 125(24):6417-6430. PubMed ID: 34105973
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics.
    Singh N; Brumer P
    Faraday Discuss; 2011; 153():41-50; discussion 73-91. PubMed ID: 22452072
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer.
    Ishizaki A; Fleming GR
    J Chem Phys; 2009 Jun; 130(23):234110. PubMed ID: 19548714
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Mujica-Martinez CA; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022706. PubMed ID: 25768530
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Unravelling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy.
    Abramavicius D; Voronine DV; Mukamel S
    Biophys J; 2008 May; 94(9):3613-9. PubMed ID: 18192357
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy.
    Dahlberg PD; Norris GJ; Wang C; Viswanathan S; Singh VP; Engel GS
    J Chem Phys; 2015 Sep; 143(10):101101. PubMed ID: 26373989
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.
    Fujihashi Y; Fleming GR; Ishizaki A
    J Chem Phys; 2015 Jun; 142(21):212403. PubMed ID: 26049423
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.
    Calhoun TR; Ginsberg NS; Schlau-Cohen GS; Cheng YC; Ballottari M; Bassi R; Fleming GR
    J Phys Chem B; 2009 Dec; 113(51):16291-5. PubMed ID: 20014871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.