BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19815529)

  • 1. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply.
    Hoppe S; Bierhoff H; Cado I; Weber A; Tiebe M; Grummt I; Voit R
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17781-6. PubMed ID: 19815529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis.
    Mayer C; Bierhoff H; Grummt I
    Genes Dev; 2005 Apr; 19(8):933-41. PubMed ID: 15805466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.
    Nguyen le XT; Mitchell BS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20681-6. PubMed ID: 24297901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple interactions between RNA polymerase I, TIF-IA and TAF(I) subunits regulate preinitiation complex assembly at the ribosomal gene promoter.
    Yuan X; Zhao J; Zentgraf H; Hoffmann-Rohrer U; Grummt I
    EMBO Rep; 2002 Nov; 3(11):1082-7. PubMed ID: 12393749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association of TIF-IA and polymerase I mediates promoter recruitment and regulation of ribosomal RNA transcription in Acanthamoeba castellanii.
    Gogain JC; Paule MR
    Gene Expr; 2005; 12(4-6):259-71. PubMed ID: 16358415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I.
    Bierhoff H; Dundr M; Michels AA; Grummt I
    Mol Cell Biol; 2008 Aug; 28(16):4988-98. PubMed ID: 18559419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth.
    Zhao J; Yuan X; Frödin M; Grummt I
    Mol Cell; 2003 Feb; 11(2):405-13. PubMed ID: 12620228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability.
    Mayer C; Zhao J; Yuan X; Grummt I
    Genes Dev; 2004 Feb; 18(4):423-34. PubMed ID: 15004009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction.
    Lin CY; Navarro S; Reddy S; Comai L
    Nucleic Acids Res; 2006; 34(17):4752-66. PubMed ID: 16971462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation.
    Heix J; Vente A; Voit R; Budde A; Michaelidis TM; Grummt I
    EMBO J; 1998 Dec; 17(24):7373-81. PubMed ID: 9857193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SV40 large T antigen binds to the TBP-TAF(I) complex SL1 and coactivates ribosomal RNA transcription.
    Zhai W; Tuan JA; Comai L
    Genes Dev; 1997 Jun; 11(12):1605-17. PubMed ID: 9203586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism.
    Ke R; Xu Q; Li C; Luo L; Huang D
    Cell Biol Int; 2018 Apr; 42(4):384-392. PubMed ID: 29205673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning.
    Zhao Z; Dammert MA; Hoppe S; Bierhoff H; Grummt I
    Nucleic Acids Res; 2016 Sep; 44(17):8144-52. PubMed ID: 27257073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of human rRNA gene transcription in mouse cells by a complete SL1 complex.
    Murano K; Okuwaki M; Momose F; Kumakura M; Ueshima S; Newbold RF; Nagata K
    J Cell Sci; 2014 Aug; 127(Pt 15):3309-19. PubMed ID: 24928901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trans-acting factors involved in species-specificity and control of mouse ribosomal gene transcription.
    Schnapp A; Rosenbauer H; Grummt I
    Mol Cell Biochem; 1991 May 29-Jun 12; 104(1-2):137-47. PubMed ID: 1921992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing of energy and nutrients by AMP-activated protein kinase.
    Hardie DG
    Am J Clin Nutr; 2011 Apr; 93(4):891S-6. PubMed ID: 21325438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mild Glucose Starvation Induces KDM2A-Mediated H3K36me2 Demethylation through AMPK To Reduce rRNA Transcription and Cell Proliferation.
    Tanaka Y; Yano H; Ogasawara S; Yoshioka S; Imamura H; Okamoto K; Tsuneoka M
    Mol Cell Biol; 2015 Dec; 35(24):4170-84. PubMed ID: 26416883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Action of Cdk1/cyclin B and SIRT1 Is Required for Mitotic Repression of rRNA Synthesis.
    Voit R; Seiler J; Grummt I
    PLoS Genet; 2015 May; 11(5):e1005246. PubMed ID: 26023773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A growth-dependent transcription initiation factor (TIF-IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis.
    Schnapp A; Pfleiderer C; Rosenbauer H; Grummt I
    EMBO J; 1990 Sep; 9(9):2857-63. PubMed ID: 2390974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometric identification of phosphorylation sites of rRNA transcription factor upstream binding factor.
    Lin CH; Platt MD; Ficarro SB; Hoofnagle MH; Shabanowitz J; Comai L; Hunt DF; Owens GK
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1617-24. PubMed ID: 17182730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.