These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19815559)

  • 1. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes.
    Chen Q; Pinon DI; Miller LJ; Dong M
    J Biol Chem; 2009 Dec; 284(49):34135-44. PubMed ID: 19815559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity.
    Chen Q; Pinon DI; Miller LJ; Dong M
    J Biol Chem; 2010 Aug; 285(32):24508-18. PubMed ID: 20529866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.
    Miller LJ; Chen Q; Lam PC; Pinon DI; Sexton PM; Abagyan R; Dong M
    J Biol Chem; 2011 May; 286(18):15895-907. PubMed ID: 21454562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore.
    Dong M; Lam PC; Pinon DI; Hosohata K; Orry A; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2011 Jul; 286(27):23888-99. PubMed ID: 21566140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site of action of a pentapeptide agonist at the glucagon-like peptide-1 receptor. Insight into a small molecule agonist-binding pocket.
    Dong M; Pinon DI; Miller LJ
    Bioorg Med Chem Lett; 2012 Jan; 22(1):638-41. PubMed ID: 22079758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular approximations between residues 21 and 23 of secretin and its receptor: development of a model for peptide docking with the amino terminus of the secretin receptor.
    Dong M; Lam PC; Gao F; Hosohata K; Pinon DI; Sexton PM; Abagyan R; Miller LJ
    Mol Pharmacol; 2007 Aug; 72(2):280-90. PubMed ID: 17475809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor.
    Dong M; Li Z; Pinon DI; Lybrand TP; Miller LJ
    J Biol Chem; 2004 Jan; 279(4):2894-903. PubMed ID: 14593094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential docking of high-affinity peptide ligands to type A and B cholecystokinin receptors demonstrated by photoaffinity labeling.
    Dong M; Liu G; Pinon DI; Miller LJ
    Biochemistry; 2005 May; 44(17):6693-700. PubMed ID: 15850403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential spatial approximation between secretin and its receptor residues in active and inactive conformations demonstrated by photoaffinity labeling.
    Dong M; Hosohata K; Pinon DI; Muthukumaraswamy N; Miller LJ
    Mol Endocrinol; 2006 Jul; 20(7):1688-98. PubMed ID: 16513792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial approximation between two residues in the mid-region of secretin and the amino terminus of its receptor. Incorporation of seven sets of such constraints into a three-dimensional model of the agonist-bound secretin receptor.
    Dong M; Li Z; Zang M; Pinon DI; Lybrand TP; Miller LJ
    J Biol Chem; 2003 Nov; 278(48):48300-12. PubMed ID: 14500709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of the molecular basis of cholecystokinin Peptide docking to its receptor using site-specific intrinsic photoaffinity labeling and molecular modeling.
    Dong M; Lam PC; Pinon DI; Abagyan R; Miller LJ
    Biochemistry; 2009 Jun; 48(23):5303-12. PubMed ID: 19441839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of the amino terminus in secretin family G protein-coupled receptors. Intrinsic photoaffinity labeling establishes initial docking constraints for the calcitonin receptor.
    Dong M; Pinon DI; Cox RF; Miller LJ
    J Biol Chem; 2004 Jan; 279(2):1167-75. PubMed ID: 14583624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretin occupies a single protomer of the homodimeric secretin receptor complex: insights from photoaffinity labeling studies using dual sites of covalent attachment.
    Dong M; Lam PC; Pinon DI; Orry A; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2010 Mar; 285(13):9919-9931. PubMed ID: 20100828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping.
    Dong M; Xu X; Ball AM; Makhoul JA; Lam PC; Pinon DI; Orry A; Sexton PM; Abagyan R; Miller LJ
    FASEB J; 2012 Dec; 26(12):5092-105. PubMed ID: 22964305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of two pairs of spatially approximated residues within the carboxyl terminus of secretin and its receptor.
    Dong M; Asmann YW; Zang M; Pinon DI; Miller LJ
    J Biol Chem; 2000 Aug; 275(34):26032-9. PubMed ID: 10859300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor.
    Dong M; Lam PC; Orry A; Sexton PM; Christopoulos A; Abagyan R; Miller LJ
    J Biol Chem; 2016 Mar; 291(10):5172-84. PubMed ID: 26740626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues.
    Harikumar KG; Lam PC; Dong M; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2007 Nov; 282(45):32834-43. PubMed ID: 17827151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial approximation between a photolabile residue in position 13 of secretin and the amino terminus of the secretin receptor.
    Zang M; Dong M; Pinon DI; Ding XQ; Hadac EM; Li Z; Lybrand TP; Miller LJ
    Mol Pharmacol; 2003 May; 63(5):993-1001. PubMed ID: 12695527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refinement of the structure of the ligand-occupied cholecystokinin receptor using a photolabile amino-terminal probe.
    Ding XQ; Dolu V; Hadac EM; Holicky EL; Pinon DI; Lybrand TP; Miller LJ
    J Biol Chem; 2001 Feb; 276(6):4236-44. PubMed ID: 11050076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding.
    Dong M; Lam PC; Pinon DI; Sexton PM; Abagyan R; Miller LJ
    Mol Pharmacol; 2008 Aug; 74(2):413-22. PubMed ID: 18467541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.